Skip to main content
Log in

Earth’s Field NMR for Organophosphate Chemical Warfare Agent Detection

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Organophosphorus (OP) nerve agents are a group of lethal small molecules. Fieldable detection of nerve agents is an on-going challenge that typically relies on mass spectrometry and infrared spectroscopy but not nuclear magnetic resonance (NMR) spectroscopy because of the portability limitations of superconducting magnets. However, Earth’s field NMR (EFNMR) demonstrates a unique signature space for OP compounds and can be made into a portable detector for OP nerve agents. Here we demonstrate a systematic study to develop the EFNMR signature space of 31 nerve-agent-related OP compounds, including surrogates, simulants, synthetic precursors, decomposition products, pesticides, and threat agents identified by the National Institutes of Health. The EFNMR spectral signatures are a diagnostic fingerprint of the molecular structure, and this study establishes the structure–signature relationships of this relatively unexplored signature space. The results indicate that EFNMR is a powerful analytical capability to distinguish and identify the unique structure of OP compounds, including nerve agents. While aimed at detection of nerve agents, this study also lays the foundations of using EFNMR for detection of any OP compound in the laboratory or in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Data for the J-couplings reported in this article that were used for the simulations of the nerve agent JCS are available upon request from the documentation counter at the OPCW Headquarters building. All other data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format, they are available from the corresponding author upon reasonable request.

References

  1. S. Chauhan, S. Chauhan, R. D’Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Chemical warfare agents. Environ. Toxicol. Pharmacol. 26, 113–122 (2008)

    Google Scholar 

  2. R. Fatz, Implementation guidance policy for new airborne exposure limits for GB, GA, GD, GF, VX, H, HD and HT (Memorandum. US Department of the Army, Office of Assistant Secretary, Installations and Environment, Washington DC, 2004)

    Google Scholar 

  3. M. Moshiri, E. Darchini-Maragheh, M. Balali-Mood, Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru 20, 81 (2012)

    Google Scholar 

  4. F. Worek, M. Koller, H. Thiermann, L. Szinicz, Diagnostic aspects of organophosphate poisoning. Toxicology 214, 182–189 (2005)

    Google Scholar 

  5. O. Nosseir, C. Hadad, Chemical Warfare Agents and Treatments (American Chemical Society, 2021)

    Google Scholar 

  6. S. Mogl, Sampling and analysis in the Chemical Weapons convention and the OPCW mobile laboratory. In: Mesilaakso M (Ed.), Chemical Weapons Convention Chemicals and Analysis, Sample Collection Preparation and Analytical Methods, Wiley, Hoboken, NJ, Wiley Online Library, pp 7–31 (2005)

  7. Z. Witkiewicz, S. Neffe, E. Sliwka, J. Quagliano, Analysis of the precursors, simulants and degradation products of chemical warfare agents. J Crit. Rev. Analyt. Chem. 48, 337–371 (2018)

    Google Scholar 

  8. A. Abragam, The Principles of Nuclear Magnetism, Oxford university press, 1961.

  9. M.J. Duer, Introduction to Solid-State NMR Spectroscopy (Blackwell Oxford, 2004)

    Google Scholar 

  10. C.P. Slichter, Principles of magnetic resonance (1990)

  11. H. Koskela, B. Andelkovic, NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions. Magn. Reson. Chem. 55, 917–927 (2017)

    Google Scholar 

  12. D.C. Kaseman, M.W. Malone, A. Tondreau, M.A. Espy, R.F. Williams, Quantitation of nuclear magnetic resonance spectra at Earth’s magnetic field. Anal. Chem. 93, 15349–15357 (2021)

    Google Scholar 

  13. S. Appelt, F. Haesing, H. Kuhn, B. Blumich, Phenomena in J-coupled nuclear magnetic resonance spectroscopy in low magnetic fields. Phys. Rev. A 76, 023420 (2007)

    ADS  Google Scholar 

  14. S. Appelt, F. Hasing, H. Kuhn, U. Sieling, B. Blumich, Analysis of molecular structures by homo- and hetero-nuclear J-coupled NMR in ultra-low field. Chem. Phys. Lett. 440, 308–312 (2007)

    ADS  Google Scholar 

  15. S. Appelt, F. Hasing, U. Sieling, A. Gordji-Nejad, S. Gloggler, B. Blumich, Paths from weak to strong coupling in NMR. Phys. Rev. A 81, 023420 (2010)

    ADS  Google Scholar 

  16. S. Appelt, H. Kuhn, F. Hasing, B. Blumich, Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earths magnetic field. NatPh 2, 105–109 (2006)

    ADS  Google Scholar 

  17. B. Blumich, F. Casanova, S. Appelt, NMR at low magnetic fields. Chem. Phys. Lett. 477, 231–240 (2009)

    ADS  Google Scholar 

  18. J. Colell, P. Turschmann, S. Gloggler, P. Schleker, T. Theis, M. Ledbetter, D. Budker, A. Pines, B. Blumich, S. Appelt, Fundamental aspects of parahydrogen enhanced low-field nuclear magnetic resonance, Phys. Rev. Lett., 110, 137602-1–137602-5 (2013)

  19. S. Gloggler, B. Blumich, S. Appelt, H. Heise, S. Matthews, NMR spectroscopy for chemical analysis at low magnetic fields, modern NMR. Methodology 335, 1–22 (2013)

    Google Scholar 

  20. P. Callaghan, A. Coy, R. Dykstra, C. Eccles, M. Halse, M. Hunter, O. Mercier, J. Robinson, New Zealand developments in earth’s field NMR. Appl. Magn. Reson. 32, 63–74 (2007). https://doi.org/10.1007/s00723-007-0012-5

    Article  Google Scholar 

  21. M.E. Halse, P.T. Callaghan, Terrestrial magnetic field NMR: recent advances. In: eMagRes

  22. M.E. Halse, P.T. Callaghan, A dynamic nuclear polarization strategy for multi-dimensional Earth’s field NMR spectroscopy. J. Magn. Reson. 195, 162–168 (2008)

    ADS  Google Scholar 

  23. M.E. Halse, P.T. Callaghan, B.C. Feland, R.E. Wasylishen, Quantitative analysis of Earth’s field NMR spectra of strongly-coupled heteronuclear systems. J. Magn. Reson. 200, 88–94 (2009)

    ADS  Google Scholar 

  24. M.E. Halse, A. Coy, R. Dykstra, C. Eccles, M. Hunter, R. Ward, P.T. Callaghan, A practical and flexible implementation of 3D MRI in the Earth’s magnetic field. J. Magn. Reson. 182, 75–83 (2006)

    ADS  Google Scholar 

  25. F. Hill-Casey, A. Sakho, A. Mohammed, M. Rossetto, F. Ahwal, S.B. Duckett, R.O. John, P.M. Richardson, R. Virgo, M.E. Halse, In Situ SABRE Hyperpolarization with Earth’s Field NMR Detection. Molecules 24, 4126 (2019)

    Google Scholar 

  26. P.M. Richardson, R.O. John, A.J. Parrott, P.J. Rayner, W. Iali, A. Nordon, M.E. Halse, S.B. Duckett, Quantification of hyperpolarisation efficiency in SABRE and SABRE-relay enhanced NMR spectroscopy. Phys. Chem. Chem. Phys. 20, 26362–26371 (2018)

    Google Scholar 

  27. R. McDermott, A.H. Trabesinger, M. Muck, E.L. Hahn, A. Pines, J. Clarke, Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295, 2247 (2002)

    ADS  Google Scholar 

  28. G.J. Béné, Nuclear magnetism of liquid systems in the Earth field range. PhR 58, 213–267 (1980)

    ADS  Google Scholar 

  29. S. Appelt, F. Hasing, H. Kuhn, J. Perlo, B. Blumich, Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth’s magnetic field. Phys. Rev. Lett. 94, 197602 (2005)

    ADS  Google Scholar 

  30. D.C. Kaseman, M.T. Janicke, R.K. Frankle, T. Nelson, G. Angles-Tamayo, R.J. Batrice, P.E. Magnelind, M.A. Espy, R.F. Williams, Chemical analysis of fluorobenzenes via multinuclear detection in the strong heteronuclear J-coupling regime. Appl. Sci. 10, 3836 (2020)

    Google Scholar 

  31. J. Bernarding, G. Buntkowsky, S. Macholl, S. Hartwig, M. Burghoff, L. Trahms, J-Coupling nuclear magnetic resonance spectroscopy of liquids in nT fields. J. Am. Chem. Soc. 128, 714–715 (2006)

    Google Scholar 

  32. A.H. Trabesinger, R. McDermott, S. Lee, M. Mück, J. Clarke, A. Pines, SQUID-detected liquid state NMR in microtesla fields. J. Phys. Chem. A 108, 957–963 (2004)

    Google Scholar 

  33. S.-H. Liao, M.-J. Chen, H.-C. Yang, S.-Y. Lee, H.-H. Chen, H.-E. Horng, S.-Y. Yang, A study of J-coupling spectroscopy using the Earth’s field nuclear magnetic resonance inside a laboratory. Rev. Sci. Instrum. 81, 104104 (2010)

    ADS  Google Scholar 

  34. M. Packard, R. Varian, Proton gyromagnetic ratio. Phys. Rev 93, 417–418 (1954)

    Google Scholar 

  35. C.S. Kang, K. Kim, S.-J. Lee, S.-M. Hwang, J.-M. Kim, K.K. Yu, H. Kwon, S.K. Lee, Y.-H. Lee, Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments. J. Appl. Phys. 110, 053906 (2011)

    ADS  Google Scholar 

  36. S.-H. Liao, H.-C. Yang, H.-E. Horng, S.Y. Yang, H.H. Chen, D.W. Hwang, L.-P. Hwang, SensitiveJ-coupling spectroscopy using high-Tcsuperconducting quantum interference devices in magnetic fields as low as microteslas. Supercond. Sci. Technol. 22, 045008 (2009)

    ADS  Google Scholar 

  37. G. Bevilacqua, V. Biancalana, A.B.-A. Baranga, Y. Dancheva, C. Rossi, Microtesla NMR J-coupling spectroscopy with an unshielded atomic magnetometer. J. Magn. Reson. 263, 65–70 (2016)

    ADS  Google Scholar 

  38. P. Bergstrom Mann, S. Clark, S.T. Cahill, C.D. Campbell, M.T. Harris, S. Hibble, T. To, A. Worrall, M. Stewart, Implementation of earth’s field NMR spectroscopy in an undergraduate chemistry laboratory. J. Chem. Educ. 96, 2326–2332 (2019)

    Google Scholar 

  39. D.C. Kaseman, P.E. Magnelind, S.W. Paisner, J.L. Yoder, M. Alvarez, A.V. Urbaitis, M.T. Janicke, P. Nath, M.A. Espy, R.F. Williams, Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields. Rev. Sci. Instrum. 91, 054103 (2020)

    ADS  Google Scholar 

  40. S.H. Liao, H.H. Chen, Y.S. Deng, M.W. Wang, K.L. Chen, C.W. Liu, C.I. Liu, H.C. Yang, H.E. Horng, J.J. Chieh, S.Y. Yang, Microtesla NMR and high resolution MR imaging using high-Tc SQUIDs. ITAS 23, 1602404–1602404 (2013)

    ADS  Google Scholar 

  41. V.I. Chizhik, P.A. Kupriyanov, G.V. Mozzhukhin, NMR in magnetic field of the earth: pre-polarization of nuclei with alternating magnetic field. Appl. Magn. Reson. 45, 641–651 (2014)

    Google Scholar 

  42. R. Wärme, L. Juhlin, A new microscale method for the conversion of phosphorus oxyacids to their fluorinated analogues, using cyanuric fluoride in solution and on solid support. Phosphorus Sulfur Silicon Relat. Elem. 185, 2402–2408 (2010)

    Google Scholar 

  43. J.G. Riess, R. Bender, J.-C. Elkaim, Ligandenaustauschreaktionen von Fluoratomen mit Chloratomen bei Phosphorverbindungen der Koordinationszahl 3 und 4. Z. Anorg. Allg. Chem. 391, 60–68 (1972)

    Google Scholar 

  44. H.J. Hogben, M. Krzystyniak, G.T.P. Charnock, P.J. Hore, I. Kuprov, Spinach—a software library for simulation of spin dynamics in large spin systems. J. Magn. Reson. 208, 179–194 (2011)

    ADS  Google Scholar 

  45. D.C. Kaseman, R.J. Batrice, R.F. Williams, Detection of natural abundance 13C J-couplings at Earth’s magnetic field for spin system differentiation of small organic molecules. J. Magn. Reson. 342, 107272 (2022)

    Google Scholar 

  46. D.I. Hoult, Fast recovery, high sensitivity NMR probe and preamplifier for low frequencies. Rev. Sci. Instrum. 50, 193–200 (1979)

    ADS  Google Scholar 

  47. J.L. Vicini, P.K. Jensen, B.M. Young, J.T. Swarthout, Residues of glyphosate in food and dietary exposure. Comprehensive Rev. Food Sci. Food Saf. 20, 5226–5257 (2021)

    Google Scholar 

  48. X. Wang, Q. Lu, J. Guo, I. Ares, M. Martínez, M.-R. Martínez-Larrañaga, X. Wang, A. Anadón, M.-A. Martínez, Oxidative stress and metabolism: a mechanistic insight for glyphosate toxicology. Annu. Rev. Pharmacool. Toxicol. 62, 617–639 (2022)

    Google Scholar 

  49. J. de Wittlaan, OPCW central analytical database, in Organisation for the Prohibition of Chemical Weapons. ed. by OftPoC. Weapons (The Hague, 2019)

    Google Scholar 

  50. N. Guide, Guide for the selection of chemical and biological decontamination equipment for emergency first responders, (2001)

  51. K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Destruction and detection of chemical warfare agents. Chem. Rev. 111, 5345–5403 (2011)

    Google Scholar 

Download references

Acknowledgements

This work is released for publication in accordance with Los Alamos National Laboratory (LANL) LA-UR-22-26916 by Triad National Security, LLC (Los Alamos, NM, USA) operator of the Los Alamos National Laboratory under contract no. 89233218CNA000001 with the U.S. Department of Energy.

Funding

This research was funded by LANL Laboratory Directed Research and Development Projects # 20170048DR, #20210827ER, and # 20210679ECR.

Author information

Authors and Affiliations

Authors

Contributions

DCK: conceptualization, methodology, investigation, formal analysis, writing—original draft, visualization, funding acquisition. PEM: conceptualization, methodology, validation, formal analysis, investigation, writing—review and editing. MTJ: conceptualization, methodology, formal analysis, investigation, writing—review and editing. MA: investigation, AT: formal analysis, investigation, resources. SW: conceptualization, formal analysis, investigation, writing—review and editing. RF: validation, investigation. RJB: methodology, resources, writing—review and editing. JLY: methodology, resources, writing—review and editing. AVU: methodology, resources. ME: conceptualization, investigation, supervision, funding acquisition. RFW: conceptualization, investigation, writing—review and editing, supervision, project administration.

Corresponding author

Correspondence to Derrick C. Kaseman.

Ethics declarations

Conflict of Interest

Robert F. Williams, Michelle A. Espy, Derrick C. Kaseman, Jacob Luther Yoder, Per Erik Magnelind, Algis V. Urbaitis, Michael Timothy Janicke, and Scarlett Widgeon Paisner have patent #US11525879B2 issued to Triad National Security LLC.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prepared for Applied Magnetic Resonance issue on the occasion of Bernhard Blümich’s 70th birthday.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaseman, D.C., Magnelind, P.E., Janicke, M.T. et al. Earth’s Field NMR for Organophosphate Chemical Warfare Agent Detection. Appl Magn Reson 54, 1297–1320 (2023). https://doi.org/10.1007/s00723-023-01565-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01565-4

Navigation