Skip to main content
Log in

Bulk NMR Measurements of Spray Dynamics

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Spray systems present unique challenges for fluid mechanics research due to their complex dynamics. Non-optical techniques such as synchrotron X-rays and magnetic resonance imaging (MRI) are promising measurement avenues for non-invasive studies of opaque or enclosed sprays. Previous MRI studies of sprays employed sophisticated pulse sequences possible only with an MRI scanner. In this work, we explore the potential of simple bulk NMR techniques, pulsed-field-gradient (PFG), time-of-fight (TOF), and dynamic magnetic resonance scattering to investigate spray dynamics in three distinct regions. A variable recovery delay was employed to filter signal contributions based on velocity. The PFG measurements of mechanical dispersion are the first of their kind to our knowledge, yielding dispersion coefficients in the range of 10–4–10–3 m2/s. Velocity measurements successfully detected velocities surpassing 30 m/s near the nozzle, with the flow slowing down to several m/s downstream. These techniques show potential for investigating spray dynamics and simple gradient requirements making them suitable for portable NMR applications and in situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T.D. Fansler, S.E. Parrish, Spray measurement technology: a review. Meas. Sci. Technol. 26(1), 012002 (2015). https://doi.org/10.1088/0957-0233/26/1/012002

    Article  ADS  Google Scholar 

  2. A. Kastengren, C.F. Powell, Synchrotron X-ray techniques for fluid dynamics. Exp. Fluids 55(3), 1686 (2014). https://doi.org/10.1007/s00348-014-1686-8

    Article  Google Scholar 

  3. C.F. Powell, Y. Yue, R. Poola, J. Wang, Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays. J. Synchrotron Radiat. 7(6), 356–360 (2000). https://doi.org/10.1107/S0909049500013431

    Article  Google Scholar 

  4. C.F. Powell, Y. Yue, S. Gupta, A. McPherson, R. Poola, J. Wang, in Development of a Quantitative Measurement of a Diesel Spray Core Using Synchrotron X-rays, Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA (2000)

  5. A. Kastengren et al., Measurements of droplet size in shear-driven atomization using ultra-small angle X-ray scattering. Int. J. Multiphase Flow 92, 131–139 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.005

    Article  MathSciNet  Google Scholar 

  6. A.L. Kastengren, C.F. Powell, Y. Wang, K.-S. Im, J. Wang, X-ray radiography measurements of diesel spray structure at engine-like ambient density. At. Sprays 19(11), 1031–1044 (2009). https://doi.org/10.1615/AtomizSpr.v19.i11.30

    Article  Google Scholar 

  7. S. Ahmadi, A.R. Aguilera, B. MacMillan, I. Mastikhin, Studies of periodic seawater spray icing with unilateral NMR. J. Magn. Reson. 334, 107109 (2022). https://doi.org/10.1016/j.jmr.2021.107109

    Article  Google Scholar 

  8. I. Mastikhin, A. Arbabi, K.M. Bade, Magnetic resonance imaging measurements of a water spray upstream and downstream of a spray nozzle exit orifice. J. Magn. Reson. 266, 8–15 (2016). https://doi.org/10.1016/j.jmr.2016.03.005

    Article  ADS  Google Scholar 

  9. I.V. Mastikhin, K.M. Bade, S. Ahmadi, A rapid magnetization preparation for MRI measurements of sprays. J. Magn. Reson. 283, 52–60 (2017). https://doi.org/10.1016/j.jmr.2017.08.011

    Article  ADS  Google Scholar 

  10. S.J. Richard, B. Newling, Measuring flow using a permanent magnet with a large constant gradient. Appl. Magn. Reson. 50(5), 627–635 (2019). https://doi.org/10.1007/s00723-018-1107-x

    Article  Google Scholar 

  11. T.M. Osán et al., Fast measurements of average flow velocity by low-field 1H NMR. J. Magn. Reson. 209(2), 116–122 (2011). https://doi.org/10.1016/j.jmr.2010.07.011

    Article  ADS  Google Scholar 

  12. E.O. Stejskal, J.E. Tanner, Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965). https://doi.org/10.1063/1.1695690

    Article  ADS  Google Scholar 

  13. E.O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965). https://doi.org/10.1063/1.1696526

    Article  ADS  Google Scholar 

  14. P.T. Callaghan, Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford University Press (2011). https://doi.org/10.1093/acprof:oso/9780199556984.001.0001

    Article  Google Scholar 

  15. P.T. Callaghan, Y. Xia, Velocity and diffusion imaging in dynamic NMR microscopy. J. Magn. Reson. 1969 91(2), 326–352 (1991). https://doi.org/10.1016/0022-2364(91)90196-Z

    Article  Google Scholar 

  16. S.-I. Han, S. Stapf, B. Blümich, Two-dimensional PFG NMR for encoding correlations of position, velocity, and acceleration in fluid transport. J. Magn. Reson. 146(1), 169–180 (2000). https://doi.org/10.1006/jmre.2000.2145

    Article  ADS  Google Scholar 

  17. V. Herold, T. Kampf, P.M. Jakob, Dynamic magnetic resonance scattering. Commun. Phys. 2(1), 46 (2019). https://doi.org/10.1038/s42005-019-0136-6

    Article  Google Scholar 

  18. P.P. Mitra, P.N. Sen, L.M. Schwartz, P. Le Doussal, Diffusion propagator as a probe of the structure of porous media. Phys. Rev. Lett. 68(24), 3555–3558 (1992). https://doi.org/10.1103/PhysRevLett.68.3555

    Article  ADS  Google Scholar 

  19. E. Özarslan et al., Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78, 16–32 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.016

    Article  Google Scholar 

  20. E. Fukushima, nuclear magnetic resonance as a tool to study flow. Annu. Rev. Fluid Mech. 31(1), 95–123 (1999). https://doi.org/10.1146/annurev.fluid.31.1.95

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Cerbino, V. Trappe, Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys. Rev. Lett. 100(18), 188102 (2008). https://doi.org/10.1103/PhysRevLett.100.188102

    Article  ADS  Google Scholar 

  22. Y. Huang, V. Yang, Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc. Combust. Inst. 30(2), 1775–1782 (2005). https://doi.org/10.1016/j.proci.2004.08.237

    Article  Google Scholar 

  23. S. Sharma, K. Ghate, T. Sundararajan, S. Sahu, Effects of air swirler geometry on air and spray droplet interactions in a spray chamber. Adv. Mech. Eng. 11(5), 168781401985097 (2019). https://doi.org/10.1177/1687814019850978

    Article  Google Scholar 

  24. I.V. Mastikhin, B.J. Balcom, P.J. Prado, C.B. Kennedy, SPRITE MRI with prepared magnetization and centric k-space sampling. J. Magn. Reson. 136(2), 159–168 (1999). https://doi.org/10.1006/jmre.1998.1612

    Article  ADS  Google Scholar 

  25. D.O. Kuethe, A. McBride, S.A. Altobelli, Velocity of mist droplets and suspending gas imaged separately. J. Magn. Reson. 216, 88–93 (2012). https://doi.org/10.1016/j.jmr.2012.01.006

    Article  ADS  Google Scholar 

  26. J. Guo, M.M.B. Ross, B. Newling, B.J. Balcom, Non-Newtonian fluid velocity profiles determined with simple magnetic resonance spin echoes. Phys. Rev. Appl. 16(2), L021001 (2021). https://doi.org/10.1103/PhysRevApplied.16.L021001

    Article  ADS  Google Scholar 

  27. J. Guo, M.M.B. Ross, B. Newling, M. Lawrence, B.J. Balcom, Laminar flow characterization using low-field magnetic resonance techniques. Phys. Fluids 33(10), 103609 (2021). https://doi.org/10.1063/5.0065986

    Article  ADS  Google Scholar 

  28. G. Eidmann, R. Savelsberg, P. Blümler, B. Blümich, The NMR MOUSE, a mobile universal surface explorer. J. Magn. Reson. A 122(1), 104–109 (1996). https://doi.org/10.1006/jmra.1996.0185

    Article  ADS  Google Scholar 

  29. P.F. Silva, M.A. Jouzdani, M. Condesso, A.C. Hurtado Rivera, M. Jouda, J.G. Korvink, Net-phase flow NMR for compact applications. J. Magn. Reson. 341, 107233 (2022). https://doi.org/10.1016/j.jmr.2022.107233

    Article  Google Scholar 

  30. B. Blümich, J. Perlo, F. Casanova, Mobile single-sided NMR. Prog. Nucl. Magn. Reson. Spectrosc. 52(4), 197–269 (2008). https://doi.org/10.1016/j.pnmrs.2007.10.002

    Article  Google Scholar 

  31. J.C. García-Naranjo, I.V. Mastikhin, B.G. Colpitts, B.J. Balcom, A unilateral magnet with an extended constant magnetic field gradient. J. Magn. Reson. 207(2), 337–344 (2010). https://doi.org/10.1016/j.jmr.2010.09.018

    Article  ADS  Google Scholar 

  32. E. Schmid, S. Rondeau, T. Rudszuck, H. Nirschl, G. Guthausen, Inline NMR via a dedicated V-shaped sensor. Sensors 23(5), 2388 (2023). https://doi.org/10.3390/s23052388

    Article  ADS  Google Scholar 

  33. K.T. O’Neill, L. Brancato, P.L. Stanwix, E.O. Fridjonsson, M.L. Johns, Two-phase oil/water flow measurement using an Earth’s field nuclear magnetic resonance flow meter. Chem. Eng. Sci. 202, 222–237 (2019). https://doi.org/10.1016/j.ces.2019.03.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. S. Zamiri for help with the fitting software and Mr. Brian Titus for helping to build the experimental setup. We also thank Dr. C. Sipperley for useful discussions, and Dr. K. Bade for providing the high-speed video data and reference information. Funding from Natural Sciences and Engineering Council of Canada (RGPIN-2018-04041) is gratefully acknowledged (I.M.)

Funding

All funding for this work was provided by Natural Science and Engineering Research Council of Canada (DG RGPIN-2018-04041).

Author information

Authors and Affiliations

Authors

Contributions

DO and IM wrote the main manuscript. WS provided aid in instrument/sequence preparation and LR-Z provided insight on sample preparation.

Corresponding author

Correspondence to I. Mastikhin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no competing financial or personal interests related to this work.

Ethical approval

No animals or human subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmond, D., Selby, W., Romero-Zeron, L. et al. Bulk NMR Measurements of Spray Dynamics. Appl Magn Reson 54, 1511–1531 (2023). https://doi.org/10.1007/s00723-023-01562-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01562-7

Navigation