Skip to main content
Log in

Ionic Mobility in Metallic Sodium Nanoparticles Confined to Porous Glass

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Metallic sodium nanoparticles can be used in numerous applications. This requires thorough investigation of their properties. To study the impact of size reduction on the ionic mobility in solid sodium, we carried out 23Na NMR measurements of the Knight shift and spin–lattice relaxation for sodium nanoparticles embedded into a porous glass with a mean pore size of 23 nm and in bulk sodium. Pronounced acceleration of relaxation in nanoparticles compared to bulk was revealed within a temperature range from 190 to 293 K, while the Knight shift nearly coincided with that in bulk solid sodium. In addition, the rate of magnetization recovery after inversion depended on magnetic field and the recovery curves were non-single exponential. The results were treated assuming the emergence of a noticeable quadrupole contribution to relaxation due to coupling of nuclear quadrupole moments with electric field gradients caused by ionic mobility intensified under nanoconfinement. The correlation time of ionic mobility was found for sodium nanoparticles at different temperatures. The activation energy was evaluated and was shown to be much smaller than in bulk solid sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Zhu, M. Xiaoge, G. Wang, M. Zhu, H. Wang, G. Xu, M. Wu, H.K. Liu, S.X. Dou, C. Wu, J. Mater. Chem. A 9, 13200 (2021). https://doi.org/10.1039/D1TA01800K

    Article  Google Scholar 

  2. D. Luo, Z. Ren, Mater. Today Phys. 16, 100276 (2021). https://doi.org/10.1016/j.mtphys.2020.100276

    Article  Google Scholar 

  3. V.E. Katnov, S.A. Trubitsina, A.A. Kayumov, F.A. Aliev, N.A. Nazimov, A.V. Dengaev, A.V. Vakhin, Catal 13, 609 (2023). https://doi.org/10.3390/catal13030609

    Article  Google Scholar 

  4. D. Zareei, D. Luo, K. Kostarelos, Z. Ren, Soft Sci. 1, 8 (2021). https://doi.org/10.20517/ss.2021.08

    Article  Google Scholar 

  5. H. Xiang, X. Zhang, D. Neuhauser, G. Lu, J. Phys. Chem. Lett. 5, 1163 (2014). https://doi.org/10.1021/jz500216t

    Article  Google Scholar 

  6. J.H. Li, M. Hayashi, G.Y. Guo, Phys. Rev. B 88, 155437 (2013). https://doi.org/10.1103/PhysRevB.88.155437

    Article  ADS  Google Scholar 

  7. G. Calas, L. Galoisy, A. Geisler, Am. Min. 106, 838 (2021). https://doi.org/10.2138/am-2021-7917

    Article  ADS  Google Scholar 

  8. H.J. Yoon, N.R. Kim, H.J. Jin, Y.S. Yun, Adv. Energy Mater. 8, 1701261 (2018). https://doi.org/10.1002/aenm.201701261

    Article  Google Scholar 

  9. W. Luo, Y. Zhang, S. Xu, J. Dai, E. Hitz, Y. Li, C. Yang, C. Chen, B. Liu, L. Hu, Nano Lett. 17, 3792 (2017). https://doi.org/10.1021/acs.nanolett.7b01138

    Article  ADS  Google Scholar 

  10. M. Shatnawi, G. Paglia, J.L. Dye, K.C. Cram, M. Lefenfeld, S.J.L. Billinge, J. Am. Chem. Soc. 129, 1386 (2007). https://doi.org/10.1021/ja067140e

    Article  Google Scholar 

  11. A.V. Uskov, D.Y. Nefedov, E.V. Charnaya, E.V. Shevchenko, J. Haase, D. Michel, Y.A. Kumzerov, A.V. Fokin, A.S. Bugaev, Phys. Solid State 58, 1234 (2016). https://doi.org/10.1134/s1063783416060330

    Article  ADS  Google Scholar 

  12. C. Hock, M. Schmidt, B. Issendorff, Phys. Rev. B 84, 113401 (2011). https://doi.org/10.1103/PhysRevB.84.113401

    Article  ADS  Google Scholar 

  13. E.V. Charnaya, M.K. Lee, L.J. Chang, Y.A. Kumzerov, A.V. Fokin, M.I. Samoylovich, A.S. Bugaev, Phys. Lett. A 379, 705 (2015). https://doi.org/10.1016/j.physleta.2014.12.028

    Article  Google Scholar 

  14. A.A. Vasilev, D.Y. Podorozhkin, D.Y. Nefedov, E.V. Charnaya, V.M. Mikushev, Y.A. Kumzerov, A.V. Fokin, Appl. Magn. Reson. 53, 1649 (2022). https://doi.org/10.1007/s00723-022-01490-y

    Article  Google Scholar 

  15. D.Y. Nefedov, D.Y. Podorozhkin, E.V. Charnaya, A.V. Uskov, J. Haase, Y.A. Kumzerov, A.V. Fokin, J. Phys. Condens. Matter 31, 255101 (2019). https://doi.org/10.1088/1361-648X/ab1111

    Article  ADS  Google Scholar 

  16. A.V. Uskov, D.Y. Nefedov, E.V. Charnaya, J. Haase, D. Michel, Y.A. Kumzerov, A.V. Fokin, A.S. Bugaev, Nano Lett. 16, 791 (2016). https://doi.org/10.1021/acs.nanolett.5b04841

    Article  ADS  Google Scholar 

  17. E.V. Charnaya, T. Loeser, D. Michel, C. Tien, D. Yaskov, Y.A. Kumzerov, Phys. Rev. Lett. 88, 097602 (2002). https://doi.org/10.1103/PhysRevLett.88.097602

    Article  ADS  Google Scholar 

  18. E.V. Charnaya, C. Tien, Y.A. Kumzerov, A.V. Fokin, Phys. Rev. B 70, 052201 (2004). https://doi.org/10.1103/PhysRevB.70.052201

    Article  ADS  Google Scholar 

  19. E.V. Charnaya, C. Tien, W. Wang, M.K. Lee, D. Michel, D. Yaskov, S.Y. Sun, Y.A. Kumzerov, Phys. Rev. B 72, 035406 (2005). https://doi.org/10.1103/PhysRevB.72.035406

    Article  ADS  Google Scholar 

  20. E.V. Charnaya, M.K. Lee, Y.A. Kumzerov, J. Phys. Condens. Matter 22, 195108 (2010). https://doi.org/10.1088/0953-8984/22/19/195108

    Article  ADS  Google Scholar 

  21. D.Y. Nefedov, E.V. Charnaya, A.V. Uskov, A.O. Antonenko, D.Y. Podorozhkin, Y.A. Kumzerov, A.V. Fokin, Phys. Solid State 63, 1739 (2021). https://doi.org/10.1134/S1063783421100279

    Article  ADS  Google Scholar 

  22. R. Bertani, M. Mali, J. Roos, D.J. Brinkmann, J. Phys. Condens. Matter 2, 7911 (1990). https://doi.org/10.1088/0953-8984/2/39/006

    Article  ADS  Google Scholar 

  23. G. Brünger, O. Kanert, D. Wolf, Phys. Rev. B 22, 4247 (1980). https://doi.org/10.1103/PhysRevB.22.4247

    Article  ADS  Google Scholar 

  24. J.L. Dye, P. Nandi, J.E. Jackson, M. Lefenfeld, P.A. Bentley, B.M. Dunyak, F.E. Kwarcinski, C.M. Spencer, T.N. Lindman, P. Lambert, P.K. Jacobson, M.Y. Redko, Chem. Mater. 23, 2388 (2011). https://doi.org/10.1021/cm2001623

    Article  Google Scholar 

  25. J. Winter, Magnetic Resonance in Metals (Oxford University Press, Oxford, 1970)

    Google Scholar 

  26. J.M. Titman, Phys. Rep. 33, 1 (1977). https://doi.org/10.1016/0370-1573(77)90060-6

    Article  ADS  Google Scholar 

  27. P.S. Hubbard, J. Chem. Phys. 53, 985 (1977). https://doi.org/10.1063/1.1674167

    Article  ADS  Google Scholar 

  28. E. Smargiassi, Phys. Rev. B 65, 012301 (2001) doi: https://doi.org/10.1103/PhysRevB.65.012301

  29. V. Schott, M. Fähnle, P.A. Madden, J. Phys. Condens. Matter 12, 1171 (2000). https://doi.org/10.1088/0953-8984/12/7/303

    Article  ADS  Google Scholar 

  30. G. Göltz, A. Heidemann, H. Mehrer, A. Seeger, D. Wolf, Philos. Mag. A 41, 723 (1980). https://doi.org/10.1080/01418618008239345

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Measurements were carried out using the equipment of the Research Park of St. Petersburg State University.

Funding

The studies were financially supported by the Russian Science Foundation, under Grant no. 21-72-20038.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AVU, EVC, and MKL; methodology: AVU, DYN, VMM, and EVC; formal analysis and investigation: AVU, DYN, and ACF; writing—original draft preparation: AVU and LJC; writing—review and editing: EVC; funding acquisition: YAK; resources: VMM and AVF; supervision: EVC and YAK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. V. Charnaya.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Consent for publication was obtained for every individual person’s data included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uskov, A.V., Nefedov, D.Y., Charnaya, E.V. et al. Ionic Mobility in Metallic Sodium Nanoparticles Confined to Porous Glass. Appl Magn Reson 54, 905–913 (2023). https://doi.org/10.1007/s00723-023-01559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01559-2

Navigation