Skip to main content

Advertisement

Log in

EPR Viscometric Measurements Using a 13C-Labeled Triarylmethyl Radical in Protein-Based Biotherapeutics and Human Synovial Fluids

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The viscosity measurements are of clinical significance for evaluation of the potential pathological conditions of biological lubricants, such as synovial fluids of joints, and for formulation and characterization of peptide- and protein-based biotherapeutics. Due to inherent potential therapeutic activity, protein drugs have proven to be one of the most efficient therapeutic agents in treatment of several life-threatening disorders, such as diabetes and autoimmune diseases. However, home-use applications for treating chronic inflammatory diseases, such as diabetes and rheumatoid arthritis, necessitate the development of high-concentration insulin and monoclonal antibodies formulations for patient self-administration. High protein concentrations can affect viscosity of the corresponding drug solutions complicating their manufacture and administration. The measurements of the viscosity of new insulin analogs and monoclonal antibodies solutions under development is of practical importance to avoid unwanted highly viscous, and therefore, painful for injection drug formulations. Recently, we have demonstrated capability of the electron paramagnetic resonance (EPR) viscometry using viscosity-sensitive 13C-labeled trityl spin probe (13C1-dFT) to report the viscosity of human blood, and interstitial fluids measured in various organs in mice ex vivo and in anesthetized mice, in vivo. In the present work, we demonstrate utility of the EPR viscometry using 13C1-dFT to measure microviscosity of commercial insulin samples, antibodies solution, and human synovial fluids using small microliter volume samples (5–50 µL). This viscometry analysis approach provides useful tool to control formulations and administration of new biopharmaceuticals, and for evaluation of the state of synovial fluids of importance for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Data from this study can be obtained upon request to VVK (valery.khramtsov@hsc.wvu.edu) or MV (murugesan.velayutham@hsc.wvu.edu).

References

  1. M. Poncelet, B. Driesschaert, Angew. Chem. Int. Ed. 59(38), 16451–16454 (2020)

    Article  Google Scholar 

  2. P.D. Morse 2nd., D.M. Lusczakoski, D.A. Simpson, Biochemistry 18(22), 5021–5029 (1979)

    Article  Google Scholar 

  3. A. Clark, J. Sedhom, H. Elajaili, G.R. Eaton, S.S. Eaton, Concepts Magn. Reson. Part A 45A, e21423 (2016)

    Article  Google Scholar 

  4. H.J. Halpern, G.V.R. Chandramouli, C. Yu, M. Peric, E.D. Barth, B.A. Teicher, D. Grdina, Magn. Reson. Chem. 33, S147–S153 (1995)

    Article  Google Scholar 

  5. J.H. Ardenkjær-Larsen, H. Laursen, I. Leunbach, G. Ehnholm, L.-G. Wistrand, J.S. Petersson, K. Golman, J. Magn. Reson. 133, 1–12 (1998)

    Article  ADS  Google Scholar 

  6. N. Kocherginsky, H.M. Swartz, Nitroxide Spin Labels. Reactions in Biology and Chemistry (CRC Press, Boca Raton, 1995)

    Google Scholar 

  7. M. Velayutham, M. Poncelet, T.D. Eubank, B. Driesschaert, V.V. Khramtsov, Molecules 26(9), 2781 (2021)

    Article  Google Scholar 

  8. M.E. Blewis, G.E. Nugent-Derfus, T.A. Schmidt, B.L. Schumacher, R.L. Sah, Eur. Cells Mater. 13, 26–38 (2007)

    Article  Google Scholar 

  9. E. Januzzi, T.C.A. Cunha, G. Silva, B.D.M. Souza, A.S.B. Duarte, M.R.S. Zanini, A.M. Andrade, A.R. Pedrosa, A.L.N. Custodio, M.A.A. Castro, Sci. Rep. 12(1), 17976 (2022)

    Article  ADS  Google Scholar 

  10. M. Cicognani, S. Rossi, G. Vecchi, A.M. Giori, F. Ferrari, Pharmaceutics 12(7), 681 (2020)

    Article  Google Scholar 

  11. J. Jezek, M. Rides, B. Derham, J. Moore, E. Cerasoli, R. Simler, B. Perez-Ramirez, Adv. Drug Deliv. Rev. 63(13), 1107–1117 (2011)

    Article  Google Scholar 

  12. T. Hong, K. Iwashita, K. Shiraki, Curr. Protein Pept. Sci. 19(8), 746–758 (2018)

    Article  Google Scholar 

  13. S.S. Virk, P.T. Underhill, Mol. Pharm. 19(11), 4233–4240 (2022)

    Article  Google Scholar 

  14. S.J. Shire, Z. Shahrokh, J. Liu, J. Pharm. Sci. 93(6), 1390–1402 (2004)

    Article  Google Scholar 

  15. M. Muttenthaler, G.E. King, D.J. Adams, P.E. Alewood, Nat. Rev. Drug Discov. 20(4), 309–325 (2021)

    Article  Google Scholar 

  16. C.C. Hanna, Y.O. Hermant, P.W.R. Harris, M.A. Brimble, Acc. Chem. Res. 54(8), 1878–1890 (2021)

    Article  Google Scholar 

  17. E.K. Sims, A.L.J. Carr, R.A. Oram, L.A. DiMeglio, C. Evans-Molina, Nat. Med. 27(7), 1154–1164 (2021)

    Article  Google Scholar 

  18. A. Moran-Thomas, N. Engl. J .Med. 385(4), 293–295 (2021)

    Article  Google Scholar 

  19. R. Cheng, N. Taleb, M. Stainforth-Dubois, R. Rabasa-Lhoret, Am. J. Physiol. Endocrinol. Metab. 320(5), E886–E890 (2021)

    Article  Google Scholar 

  20. M.B. Gelb, H.D. Maynard, Macromol. Mater. Eng. 306(9), 2100197 (2021)

    Article  Google Scholar 

  21. P. Gupta, E.K. Makowski, S. Kumar, Y.L. Zhang, J.M. Scheer, P.M. Tessier, Mol. Pharm. 19(3), 775–787 (2022)

    Article  Google Scholar 

  22. H. Bachelez, S.E. Choon, S. Marrakchi, A.D. Burden, T.F. Tsai, A. Morita, A.A. Navarini, M. Zheng, J. Xu, H. Turki, M.J. Anadkat, S. Rajeswari, H. Hua, S.D. Vulcu, D. Hall, K. Tetzlaff, C. Thoma, M.G. Lebwohl, E.T. Investigators, N. Engl. J. Med. 385(26), 2431–2440 (2021)

    Article  Google Scholar 

  23. S. Edavettal, P. Cejudo-Martin, B. Dasgupta, D. Yang, M.D. Buschman, D. Domingo, K. Van Kolen, P. Jaiprasat, R. Gordon, K. Schutsky, B. Geist, N. Taylor, C.H. Soubrane, E. Van Der Helm, A. LaCombe, Z. Ainekulu, E. Lacy, J. Aligo, J. Ho, Y. He, P.F. Lebowitz, J.T. Patterson, J.M. Scheer, S. Singh, Med. 3(12), 860-882e15 (2022)

    Article  Google Scholar 

  24. H. Li, T. Buck, M. Zandonatti, J. Yin, A. Moon-Walker, J. Fang, A. Koval, M.L. Heinrich, M.M. Rowland, R. Diaz Avalos, S.L. Schendel, D. Parekh, D. Zyla, A. Enriquez, S. Harkins, B. Sullivan, V. Smith, O. Chukwudozie, R. Watanabe, J.E. Robinson, R.F. Garry, L.M. Branco, K.M. Hastie, E.O. Saphire, Sci. Transl. Med. 14(668), eabq0991 (2022)

    Article  Google Scholar 

  25. R.N. Amaria, M. Postow, E.M. Burton, M.T. Tetzlaff, M.I. Ross, C. Torres-Cabala, I.C. Glitza, F. Duan, D.R. Milton, K. Busam, L. Simpson, J.L. McQuade, M.K. Wong, J.E. Gershenwald, J.E. Lee, R.P. Goepfert, E.Z. Keung, S.B. Fisher, A. Betof-Warner, A.N. Shoushtari, M. Callahan, D. Coit, E.K. Bartlett, D. Bello, P. Momtaz, C. Nicholas, A. Gu, X. Zhang, B.R. Korivi, M. Patnana, S.P. Patel, A. Diab, A. Lucci, V.G. Prieto, M.A. Davies, J.P. Allison, P. Sharma, J.A. Wargo, C. Ariyan, H.A. Tawbi, Nature 611(7934), 155–160 (2022)

    Article  ADS  Google Scholar 

  26. H. Zhang, P.A. Dalby, Mol. Pharm. 19(11), 4098–4110 (2022)

    Article  Google Scholar 

  27. P.J. Carter, G.A. Lazar, Nat. Rev. Drug Discov. 17(3), 197–223 (2018)

    Article  Google Scholar 

  28. R.L. Wu, A.H. Idris, N.M. Berkowitz, M. Happe, M.R. Gaudinski, C. Buettner, L. Strom, S.F. Awan, L.A. Holman, F. Mendoza, I.J. Gordon, Z. Hu, A. Campos Chagas, L.T. Wang, L. Da Silva Pereira, J.R. Francica, N.K. Kisalu, B.J. Flynn, W. Shi, W.P. Kong, S. O’Connell, S.H. Plummer, A. Beck, A. McDermott, S.R. Narpala, L. Serebryannyy, M. Castro, R. Silva, M. Imam, I. Pittman, S.P. Hickman, A.J. McDougal, A.E. Lukoskie, J.R. Murphy, J.G. Gall, K. Carlton, P. Morgan, E. Seo, J.A. Stein, S. Vazquez, S. Telscher, E.V. Capparelli, E.E. Coates, J.R. Mascola, J.E. Ledgerwood, L.K. Dropulic, R.A. Seder, V.R.C.S. Team, N. Engl. J. Med. 387(5), 397–407 (2022)

    Article  Google Scholar 

  29. D. Focosi, S. McConnell, A. Casadevall, E. Cappello, G. Valdiserra, M. Tuccori, Lancet Infect. Dis. 22(11), e311–e326 (2022)

    Article  Google Scholar 

  30. S. Patel, B. Saxena, P. Mehta, Heliyon 7(2), e06158 (2021)

    Article  Google Scholar 

  31. G. Walsh, E. Walsh, Nat. Biotechnol. 40(12), 1722–1760 (2022)

    Article  Google Scholar 

  32. L. Ayalew, P. Chan, Z. Hu, A. Shen, E. Duenas, W. Kirschbrown, A.J. Schick 3rd., Y. Chen, M.T. Kim, Mol. Pharm. 19(11), 4043–4054 (2022)

    Article  Google Scholar 

  33. J. Parvizi, T.L. Tan, K. Goswami, C. Higuera, C. Della Valle, A.F. Chen, N. Shohat, J. Arthroplast. 33(5), 1309–1314 (2018)

    Article  Google Scholar 

  34. S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42–55 (2006)

    Article  ADS  Google Scholar 

  35. A.C. Anselmo, Y. Gokarn, S. Mitragotri, Nat. Rev. Drug Discov. 18(1), 19–40 (2019)

    Article  Google Scholar 

  36. R.A. Lewus, N.E. Levy, A.M. Lenhoff, S.I. Sandler, Biotechnol. Progr. 31(1), 268–276 (2015)

    Article  Google Scholar 

  37. G.D.O. Lowe, J.C. Barbenel, in Clinical Blood Rheology. ed. by G.D.O. Lowe (CRC Press, Boca Raton, 1988), pp.12–44

    Google Scholar 

  38. W.H. Reinhart, S.J. Danoff, S. Usami, S. Chien, J. Lab. Clin. Med. 104(6), 921–931 (1984)

    Google Scholar 

  39. M.A. Haidekker, A.G. Tsai, T. Brady, H.Y. Stevens, J.A. Frangos, E. Theodorakis, M. Intaglietta, Am. J. Physiol. Heart Circ. Physiol. 282(5), H1609–H1614 (2002)

    Article  Google Scholar 

  40. A. Vysniauskas, I. Lopez-Duarte, N. Duchemin, T.T. Vu, Y. Wu, E.M. Budynina, Y.A. Volkova, E. Pena Cabrera, D.E. Ramirez-Ornelas, M.K. Kuimova, Phys. Chem. Chem. Phys. 19(37), 25252–25259 (2017)

    Article  Google Scholar 

  41. M. Poncelet, T. Ngendahimana, T.D. Gluth, E.H. Hoblitzell, T.D. Eubank, G.R. Eaton, S.S. Eaton, B. Driesschaert, Analyst. 147(24), 5643–5648 (2022)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the NIH grants EB023990 (BD), EB028553 (BD), GM143595 (BD), EB32321 (BD), CA194013 (VVK) and CA192064 (VVK).

Author information

Authors and Affiliations

Authors

Contributions

MV performed EPR studies; MV and VVK wrote the manuscript; MB and BD synthesized the probe; JAP, JTK and MJD provided biological samples. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Valery V. Khramtsov.

Ethics declarations

Conflict of Interest

All authors declare no potential conflict of interest, financial or non-financial, relevant to this work.

Ethical Approval

Collection of Human Synovial Fluids (HSF): all subjects (n = 7) was conducted in accordance with the Declaration of Helsinki and approved Institutional Review Board protocol, #1709745853. All subjects gave informed consent for inclusion in the study and consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velayutham, M., Poncelet, M., Perini, J.A. et al. EPR Viscometric Measurements Using a 13C-Labeled Triarylmethyl Radical in Protein-Based Biotherapeutics and Human Synovial Fluids. Appl Magn Reson 54, 779–791 (2023). https://doi.org/10.1007/s00723-023-01556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01556-5

Navigation