Skip to main content
Log in

Magnetic Phase Separation in Double Perovskite Sr2TiMnO5.87

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The double perovskite Sr2TiMnO5.87 was synthesized via the solution combustion precursor method using Sr(NO3)2, MnO2, i-Ti(OC3H7)4, and disubstituted ammonium citrate as a complexing agent. The crystal structure and unit cell parameters are refined by the Rietveld method using powder X-ray diffraction. The magnetic properties of double perovskites Sr2TiMnO5.87 were studied using the ESR spectroscopy, specific heat measurements in the temperature range ~ 5–300 K, and magnetometry under cooling in zero- (ZFC) and nonzero-fields (FC). The four ESR line were observed in ESR spectra, three ESR lines with g ~ 2 and fourth ESR at Bres = 50 mT in both X-and Q-bands measurements in the temperature range 37.5–42 K in Sr2TiMnO5.87. The peaks obtained in real and imaginary parts of AC magnetization measurements confirm phase separation at the same temperatures. The antiferromagnetic ordering was found out below the temperature TN ≈ 12 K. The fitting Debye and Einstein temperatures, obtained from the specific heat measurements, are equal to θD = 217 K, θE1 = 275 K, θE2 = 615 K, and θE3 = 2000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data and materials are available on request.

References

  1. M.D.C. Viola, M. Martinez-Lope, J. Alonso, P. Velasco, J. Martinez, J. Pedragosa, R. Carbonio, V. Fernandes-Diaz, Chem. Mater. 14, 812–818 (2002). https://doi.org/10.1021/cm011186j

    Article  Google Scholar 

  2. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677–680 (1998). https://doi.org/10.1038/27167

    Article  ADS  Google Scholar 

  3. Y. Lin, X. Chen, X. Liu, Solid State Commun. 149, 784–787 (2009). https://doi.org/10.1016/j.ssc.2009.02.028

    Article  ADS  Google Scholar 

  4. O.N. Meetei, O. Erten, A. Mukherjee, M. Randeria, N. Trivedi, P. Woodward, Phys. Rev. B 87, 165104 (2013). https://doi.org/10.1103/PhysRevB.87.165104

    Article  ADS  Google Scholar 

  5. O. Erten, O.N. Meetei, A. Mukherjee, M. Randeria, N. Trivedi, P. Woodward, Phys. Rev. B 87, 165105 (2013). https://doi.org/10.1103/PhysRevB.87.165105

    Article  ADS  Google Scholar 

  6. T. Saha-Dasgupta, J. Supercond. and Novel Magn. 26, 1991–1995 (2013). https://doi.org/10.1007/s10948-012-1920-7

    Article  Google Scholar 

  7. C. Ritter, M. Ibarra, L. Morellon, J. Blasco, J. Garcia, J. Teresa, J. Phys. Condens. Matter 12, 8295–8308 (2000). https://doi.org/10.1088/0953-8984/12/38/306

    Article  ADS  Google Scholar 

  8. M. Sanjuan, M. Laguna, Phys. Rev. B 64, 174305 (2001). https://doi.org/10.1103/PhysRevB.64.174305

    Article  ADS  Google Scholar 

  9. M. Retuerto, M. Garcia-Hernandez, M. Martinez-Lope, M. Fernandez-Diaz, J. Attfield, J. Alonso, J. Mater. Chem. 17, 3555–3561 (2007). https://doi.org/10.1039/B705797K

    Article  Google Scholar 

  10. D. Serrate, J. De Teresa, M. Idarra, J. Phys. Condens. Matter 19, 023201 (2006). https://doi.org/10.1088/0953-8984/19/2/023201

    Article  ADS  Google Scholar 

  11. J.-W.G. Bos, J.P. Attfield, Phys. Rev. B 70, 174434 (2004). https://doi.org/10.1103/PhysRevB.70.174434

    Article  ADS  Google Scholar 

  12. S. Kumar, G. Giovannetti, J. van den Brink, S. Picozzi, Phys. Rev. B 82, 134429 (2010). https://doi.org/10.1103/PhysRevB.82.134429

    Article  ADS  Google Scholar 

  13. P.N. Lekshmi, S.S. Pillai, K.G. Suresh, P.N. Santhosh, M.R. Varma, J. Alloys Compd. 522, 90–95 (2012). https://doi.org/10.1016/j.jallcom.2012.01.091

    Article  Google Scholar 

  14. O. Mustonen, S. Vasala, E. Sadrollahi, K.P. Schmidt, C. Baines, H.C. Walker, I. Terasaki, F.J. Litterst, E. Baggio-Saitovitch, M. Karppinen, Nat. Commun. 9, 1085 (2018). https://doi.org/10.1038/s41467-018-03435-1

    Article  ADS  Google Scholar 

  15. R. Mizaras, A. Loidl, Phys. Rev. B 56, 726–729 (1997). https://doi.org/10.1103/PhysRevB.56.10726

    Article  Google Scholar 

  16. P. Aich, C. Meneghini, L. Tortora, V. Siruguri, S.D. Kaushik, D. Fuf, S. Ray, J. Mater. Chem. C 7, 3560 (2019). https://doi.org/10.1039/C8TC04293D

    Article  Google Scholar 

  17. U. Bhardwaj, A. Sharma, A. Mathur, A. Halder, H.S. Kushwaha, Energy Storage 4, 293 (2022). https://doi.org/10.1002/est2.293

    Article  Google Scholar 

  18. A. Sharma, U. Bhardwaj, H.S. Kushwaha, Clean. Eng. Technol. 2, 100087 (2021). https://doi.org/10.1016/j.clet.2021.100087

    Article  Google Scholar 

  19. J. Roa-Rojas, C. Salazar M, D. Llamosa P, A.A. León-Vanegas, D.L. Téllez, P. Pureur, F.T. Dias, V.N. Vieira, J. Magn. Magn. Mater. 320, 104-e106 (2008). https://doi.org/10.1016/j.jmmm.2008.02.023

    Article  Google Scholar 

  20. D. Landinez-Tellez, G. Pena-Rodriguez, F. Fajardo, J. Arbey Rodriguez M, J. Roa-Rojas, Dyna 79(171), 111–115 (2012)

    Google Scholar 

  21. J. Lamsal, R. Mondal, A. Kumar, K. Kamala Bharathi, P.N. Santhosh, R. Nirmala, A.K. Nigam, W.B. Yelon, S. Quezado, S.K. Malik, J. Appl. Phys. 109, 07E329 (2011). https://doi.org/10.1063/1.3562917

    Article  Google Scholar 

  22. S. Sharma, K. Singh, R. Rawat, N.P. Lalla, J. Alloys Compd. 693, 188–193 (2017). https://doi.org/10.1016/j.jallcom.2016.09.179

    Article  Google Scholar 

  23. I. Qasim, B.J. Kennedy, J. Solid State Chem. 200, 39–42 (2013). https://doi.org/10.1016/j.jssc.2013.01.011

    Article  ADS  Google Scholar 

  24. S. Sharma, P. Yadav, T. Sau, P. Yanda, P.J. Baker, I. da Silva, A. Sundaresan, N.P. Lalla, J. Magn. Magn. Mater 492, 165671 (2019). https://doi.org/10.1016/j.jmmm.2019.165671

    Article  Google Scholar 

  25. K.P. Meher, M. Savinov, S. Kamba, V. Goian, K.B.R. Varma, J. Appl. Phys. 108, 094108 (2010). https://doi.org/10.1063/1.3500369

    Article  ADS  Google Scholar 

  26. N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan, J. Baltrusaitis, Appl. Surf. Sci. Adv. 5, 100112 (2021). https://doi.org/10.1016/j.apsadv.2021.100112

    Article  Google Scholar 

  27. J. Lu, L. Si, Q. Zhang, C. Tian, X. Liu, C. Song, J. Zhang, Adv. Mater. 33, 2102525 (2021). https://doi.org/10.1002/adma.202102525

    Article  Google Scholar 

  28. C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy (Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, 1979)

    Google Scholar 

  29. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20 (National Institute of Standards and Technology, Gaithersburg, 2000), p.20899. https://doi.org/10.18434/T4T88K (retrieved 25.08.2022)

    Book  Google Scholar 

  30. H. Wu, X.H. Zhu, J. Am. Ceram. Soc. 102, 4698–4709 (2019). https://doi.org/10.1111/jace.16348

    Article  Google Scholar 

  31. R.Q. Tan, Y.F. Zhu, Appl. Catal. B-Environ. 58, 61–68 (2005). https://doi.org/10.1016/j.apcatb.2004.12.003

    Article  Google Scholar 

  32. S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir, R. Muzychuk, Appl. Catal. A General 209, 345–358 (2001). https://doi.org/10.1016/S0926-860X(00)00779-1

    Article  Google Scholar 

  33. I.V. Yatsyk, R.M. Eremina, T.I. Chupakhina, Y.A. Deeva, Magn. Reson. Solids 24, 22202 (2022). https://doi.org/10.26907/mrsej-22202

    Article  Google Scholar 

  34. C. Ross, M. Nitta, Phys. Rev. B 107(2), 024422 (2023). https://doi.org/10.1103/PhysRevB.107.024422

    Article  ADS  Google Scholar 

  35. J.P. Joshi, S.V. Bhat, J. Magn. Reson. 168, 284 (2004). https://doi.org/10.1016/j.jmr.2004.03.018

    Article  ADS  Google Scholar 

  36. T. Vasilchikova, A. Vasiliev, M. Evstigneeva, V. Nalbandyan, J.S. Lee, H.J. Koo, M.H. Whangbo, Materials. 15, 2563 (2022). https://doi.org/10.3390/ma15072563

    Article  ADS  Google Scholar 

  37. M. Balanda, H.K. von Nidda, M. Heinrich, A. Loidl, Relaxation phenomena liquid crystals, magnetic systems, polymers, high-t c superconductors metallic glasses (Springer Berlin Heidelberg, Berlin, 2003), pp.89–135. https://doi.org/10.1007/978-3-662-09747-2_3

    Book  Google Scholar 

  38. D.V. Popov, T.P. Gavrilova, I.F. Gilmutdinov, M.A. Cherosov, V.A. Shustov, E.M. Moshkina, L.N. Bezmaternykh, R.M. Eremina, J Phys Chem Solids 148(109695), 1–7 (2021). https://doi.org/10.1016/j.jpcs.2020.109695

    Article  Google Scholar 

  39. S. Sharma, N.P. Lalla, AIP Conf. Proc. 1832, 090010 (2017). https://doi.org/10.1063/1.4980563

    Article  Google Scholar 

  40. A. Abragam, B. Bleaney, ESR of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  41. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, F. Rosch, A. Neubauer, R. Georgii, P. Boni, Science 323, 915–919 (2009). https://doi.org/10.1126/science.1166767

    Article  ADS  Google Scholar 

  42. Y. Tokura, N. Kanazawa, Chem. Rev. 121, 2857–2897 (2021). https://doi.org/10.1021/acs.chemrev.0c00297

    Article  Google Scholar 

  43. N.P. Kolmakova, S.A. Kolonogii, M.Y. Nekrasova, R.Z. Levitin, Phys. Solid State 41, 1649–1651 (1999). https://doi.org/10.1134/1.1131063

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation (Project No. 22-42-02014) and DST Project number DST/INT/RUS/RSF/P-55/2021.

Funding

This research was supported by the Russian Science Foundation (Project No. 22–42-02014) and DST Project number DST/INT/RUS/RSF/P-55/2021.

Author information

Authors and Affiliations

Authors

Contributions

DVP—acquired data visualization, writing an article (review and editing). IVY—ESR measurement in X-band. RGB—magnetization measurements. MAC—specific heat data measurements. IRV—XPS measurements. RVY—interpretation of XPS. IAF—SEM experiment. TIC—fit of X-ray data and synthesis of the sample. YAD—synthesis of the sample. IIF—ESR measurement in Q-band. TM—conceptualization, writing an article (review and editing). RME—writing an article (original draft), supervision.

Corresponding author

Correspondence to D. V. Popov.

Ethics declarations

Conflict of interest

No competing interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, D.V., Yatsyk, I.V., Batulin, R.G. et al. Magnetic Phase Separation in Double Perovskite Sr2TiMnO5.87. Appl Magn Reson 54, 561–580 (2023). https://doi.org/10.1007/s00723-023-01541-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01541-y

Navigation