Skip to main content
Log in

Magnetic Ordering in TlGa1-xFexSe2 Dilute Magnetic Semiconductors with Various Fe Dilution Ratios

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The results of the studies of structural and magnetic properties of Fe-doped \({\mathrm{TlGaSe}}_{2}\) (\({\mathrm{TlGa}}_{1-\mathrm{x}}{\mathrm{Fe}}_{\mathrm{x}}{\mathrm{Se}}_{2}\)) layered magnetic semiconductor grown with two different doping concentrations (\(x\)) are presented. Electron paramagnetic resonance (EPR) investigations revealed that Fe3+ ions are located at the centers of GaSe4 tetrahedra formed by Se atoms and the site symmetry around Fe3+ centers are orthorhombic. The crystal field parameters of the structure have been calculated by fitting the orthorhombic spin Hamiltonian using rotation patterns of EPR spectra. The crystal field parameters and rhombicity ratio (\({\lambda }^{^{\prime}}\)) estimated from magnetization and EPR measurements of \({\mathrm{TlGa}}_{1-\mathrm{x}}{\mathrm{Fe}}_{\mathrm{x}}{\mathrm{Se}}_{2}\) crystals are found to be larger and lower for samples with higher and lower dilution ratios respectively. Structural stability, electronic and magnetic properties of the Fe-doped \({\mathrm{TlGaSe}}_{2}\) four-layer slab were explored using density functional theory (DFT) calculations. We have found that substituting \(\mathrm{Fe}\) single dopant atom at the \(\mathrm{Ga}\) site, and the formation of substitutional \({\mathrm{FeSe}}_{4}\) complexes due to the strong hybridization between the electronic states of the dopants and the neighboring \(\mathrm{Se}\) atoms are geometrically and energetically favorable for \({\mathrm{TlGa}}_{1-\mathrm{x}}{\mathrm{Fe}}_{\mathrm{x}}{\mathrm{Se}}_{2}\). Our calculations indicate that the magnetic coupling between Fe dopants and the neighboring \(\mathrm{Se}\) atoms is dominantly ferromagnetic. While weakly antiferromagnetic interactions between Fe–Fe dopants due to the super-exchange mechanism is favorable. The positive value of the Curie temperature together with the observed antiferromagnetic hysteresis loops as well as with the characteristic temperature dependence of magnetic susceptibility indicate the existence of combined antiferromagnetic and weak ferromagnetic ordering between interacting unpaired spin orbitals of Fe3+ ions in \({\mathrm{TlGa}}_{1-\mathrm{x}}{\mathrm{Fe}}_{\mathrm{x}}{\mathrm{Se}}_{2}\) compounds are important experimental confirmations of theoretical predictions. The saturation magnetization for \({\mathrm{TlGa}}_{1-\mathrm{x}}{\mathrm{Fe}}_{\mathrm{x}}{\mathrm{Se}}_{2}\) compound is found to increase with increasing of the Fe3+ dopant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G.A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  Google Scholar 

  2. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998). https://doi.org/10.1126/science.281.5379.951

    Article  ADS  Google Scholar 

  3. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. vonMolnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  ADS  Google Scholar 

  4. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001). https://doi.org/10.1126/science.1056186

    Article  ADS  Google Scholar 

  5. F. Mikailzade, A.G. Şale, S. Kazan, R.I. Khaibullin, N.I. Khalitov, V.I. Nuzhdin, T.G. Mammadov, Magnetic properties of Co implanted TlInS2 and TlGaSe2 crystals. Solid State Commun. 152, 407–409 (2012). https://doi.org/10.1016/j.ssc.2011.11.046

    Article  ADS  Google Scholar 

  6. M. Maksutoglu, F.A. Mikailzade, M.Y. Seyidov, T.G. Mammadov, A.A. Sukhanov, N.M. Lyadov, V.F. Valeev, R.I. Khaibullin, Magnetic resonance and magnetization studies of Fe implanted TlInS2 and TlGaSe2 crystals. Mater. Res. Express. 6, 76109 (2019). https://doi.org/10.1088/2053-1591/ab1510

    Article  Google Scholar 

  7. S. Gökçe, T.G. Mammadov, A.I. Najafov, F. Mikailzade, M.Y. Seyidov, Synthesis and magnetic characterizations of TlIn1-xFexS2 solid solution with x= 0016 as a new low-dimensional dilute magnetic-semiconductor material. J. Magn. Magn. Mater. (2022). https://doi.org/10.1016/j.jmmm.2022.169068

    Article  Google Scholar 

  8. W. Henkel, H.D. Hochheimer, C. Carlone, A. Werner, S. Ves, H.G.V. Schnering, High-pressure Raman study of the ternary chalcogenides TlGaS2, TlGaSe2, TlInS2, and TlInSe2. Phys. Rev. B. 26, 3211 (1982). https://doi.org/10.1103/PhysRevB.26.3211

    Article  ADS  Google Scholar 

  9. D. Müller, H. Hahn, Untersuchungen über ternäre Chalkogenide. XXIV. Zur Struktur des TlGaSe2. Zeitschrift Für Anorg. Und Allg. Chemie. 438, 258–272 (1978). https://doi.org/10.1002/zaac.19784380128

    Article  Google Scholar 

  10. A. Cengiz, Y.M. Chumakov, M. Erdem, Y. Şale, F.A. Mikailzade, M.Y. Seyidov, Origin of the optical absorption of TlGaSe2 layered semiconductor in the visible range. Semicond. Sci. Technol. 33, 75019 (2018). https://doi.org/10.1088/1361-6641/aac97b

    Article  Google Scholar 

  11. S. Yang, M. Wu, H. Wang, H. Cai, L. Huang, C. Jiang, S. Tongay, Ultrathin ternary semiconductor TlGaSe 2 phototransistors with broad-spectral response. 2D Mater. 4, 35021 (2017). https://doi.org/10.1088/2053-1583/aa80c7

    Article  Google Scholar 

  12. F.A. Mikailov, B.Z. Rameev, S. Kazan, F. Yildiz, T.G. Mammadov, B. Aktaş, EPR spectra of Fe3+ centers in layered TlGaSe2 single crystal. Solid State Commun. 133, 389–392 (2005). https://doi.org/10.1016/j.ssc.2004.11.026

    Article  ADS  Google Scholar 

  13. M. Açıkgöz, S. Kazan, F.A. Mikailov, T.G. Mammadov, B. Aktaş, Structural phase transitions in Fe3+-doped ferroelectric TlGaSe2 crystal. Solid State Commun. 145, 539–544 (2008). https://doi.org/10.1016/j.ssc.2008.01.009

    Article  ADS  Google Scholar 

  14. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). https://doi.org/10.1007/s12045-017-0529-3

    Article  ADS  MathSciNet  Google Scholar 

  16. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  17. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  ADS  Google Scholar 

  18. D.R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B. 88, 85117 (2013). https://doi.org/10.1103/PhysRevB.88.085117

    Article  ADS  Google Scholar 

  19. D.R. Hamann, Erratum: optimized norm-conserving vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B. 95, 239906 (2017). https://doi.org/10.1103/PhysRevB.95.239906

    Article  ADS  Google Scholar 

  20. M. Schlipf, F. Gygi, Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015). https://doi.org/10.1016/j.cpc.2015.05.011

    Article  ADS  MATH  Google Scholar 

  21. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  22. I. Morrison, D.M. Bylander, L. Kleinman, Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B. 47, 6728 (1993). https://doi.org/10.1103/PhysRevB.47.6728

    Article  ADS  Google Scholar 

  23. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.8861

    Article  ADS  Google Scholar 

  24. T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B. 67, 155108 (2003). https://doi.org/10.1103/PhysRevB.67.155108

    Article  ADS  Google Scholar 

  25. T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr. Phys. Rev. B. 69, 195113 (2004). https://doi.org/10.1103/PhysRevB.69.195113

    Article  ADS  Google Scholar 

  26. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B. 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  ADS  Google Scholar 

  27. A. Il Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987). https://doi.org/10.1016/0304-8853(87)90721-9

    Article  ADS  Google Scholar 

  28. M.J. Han, T. Ozaki, J. Yu, Electronic structure, magnetic interactions, and the role of ligands in Mn n (n= 4, 12) single-molecule magnets. Phys. Rev. B. 70, 184421 (2004). https://doi.org/10.1103/PhysRevB.70.184421

    Article  ADS  Google Scholar 

  29. A. Terasawa, M. Matsumoto, T. Ozaki, Y. Gohda, Efficient algorithm based on liechtenstein method for computing exchange coupling constants using localized basis set. J. Phys. Soc. Japan. 88, 114706 (2019). https://doi.org/10.7566/JPSJ.88.114706

    Article  ADS  Google Scholar 

  30. S. Ozdemir, M. Bucurgat, Photoelectrical properties of TlGaSe2 single crystals. Solid State Sci. 33, 25–31 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.04.006

    Article  ADS  Google Scholar 

  31. S. Johnsen, Z. Liu, J.A. Peters, J.-H. Song, S.C. Peter, C.D. Malliakas, N.K. Cho, H. Jin, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Thallium chalcogenide-based wide-band-gap semiconductors: TlGaSe2 for radiation detectors. Chem. Mater. 23, 3120–3128 (2011). https://doi.org/10.1021/cm200946y

    Article  Google Scholar 

  32. C.F. Holder, R.E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019). https://doi.org/10.1021/acsnano.9b05157

    Article  Google Scholar 

  33. M. Nakamura, H. Nakamura, K. Shimamura, N. Ohashi, Growth and characterization of a gallium monosulfide (GaS) single crystal using the Bridgman method. J. Cryst. Growth. 573, 126303 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126303

    Article  Google Scholar 

  34. J. Guo, J. Jian, J. Liu, B. Cao, R. Lei, Z. Zhang, B. Song, H. Zhao, Synthesis of SnSe nanobelts and the enhanced thermoelectric performance in its hot-pressed bulk composite. Nano Energy 38, 569–575 (2017). https://doi.org/10.1016/j.nanoen.2017.06.033

    Article  Google Scholar 

  35. Y. Li, X. Shi, D. Ren, J. Chen, L. Chen, Investigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSe. Energies 8, 6275–6285 (2015). https://doi.org/10.3390/en8076275

    Article  Google Scholar 

  36. M. Jin, S. Lin, W. Li, Z. Chen, R. Li, X. Wang, Y. Chen, Y. Pei, Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chem. Mater. 31, 2603–2610 (2019). https://doi.org/10.1021/acs.chemmater.9b00393

    Article  Google Scholar 

  37. S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  38. G.E. Delgado, A.J. Mora, F.V. Perez, J. Gonzalez, Growth and crystal structure of the layered compound TlGaSe2. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 42, 663–666 (2007). https://doi.org/10.1002/crat.200610885

    Article  Google Scholar 

  39. P. Gnutek, M. Açıkgöz, C. Rudowicz, Superposition model analysis of the zero-field splitting parameters of Fe3+ doped in TlInS2 crystal—Low symmetry aspects. Opt. Mater. (Amst) 32, 1161–1169 (2010). https://doi.org/10.1016/j.optmat.2010.03.024

    Article  ADS  Google Scholar 

  40. S.K. Misra, C. Rudowicz, Effect of monoclinic symmetry on the EPR spectra of Gd3+-doped hydrated single crystals of rare-earth trichlorides. Phys. Status Solidi. 147, 677–684 (1988). https://doi.org/10.1002/pssb.2221470226

    Article  Google Scholar 

  41. T.H. Yeom, C. Rudowicz, S.H. Choh, D.G. McGavin, Monoclinic spin hamiltonian analysis of EPR spectra of Mn2+ in BiVO4 single crystals. Phys. Status Solidi. 198, 839–851 (1996). https://doi.org/10.1002/pssb.2221980229

    Article  Google Scholar 

  42. J.A. Weil, J.R. Bolton 2007 Electron paramagnetic resonance: elementary theory and practical applications. John Wiley & Sons

  43. A. Abragam, B. Bleaney, Electron paramagnetic resonance of transition ions (Oxford University Press, Oxford, UK, 2012)

    Google Scholar 

  44. S. Stoll, Spect. Simul. Solid-state Elect. Paramagn Res (2003). https://doi.org/10.3929/ethz-a-004529758

    Article  Google Scholar 

  45. https://easyspin.org/easyspin/documentation/frames.html, (2023). . (accessed March 2, 2023).

  46. M. Açikgöz, Analysis of zero-field splitting parameters of Fe3+ Doped TlGaS2 crystal using spin hamiltonian separation (SHS) method. J. Supercond. Nov. Magn. 25, 2697–2700 (2012). https://doi.org/10.1007/s10948-011-1245-y

    Article  Google Scholar 

  47. C. Rudowicz, R. Bramley, On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. J. Chem. Phys. 83, 5192–5197 (1985). https://doi.org/10.1063/1.449731

    Article  ADS  Google Scholar 

  48. M.Y. Seyidov, Y. Sahin, M.H. Aslan, R.A. Suleymanov, Mechanisms of current flow in p-TlGaSe2 single crystals. Semicond. Sci. Technol. 21, 1633 (2006). https://doi.org/10.1088/0268-1242/21/12/022

    Article  ADS  Google Scholar 

  49. M.Y. Seyidov, F.A. Mikailzade, T. Uzun, A.P. Odrinsky, E. Yakar, V.B. Aliyeva, S.S. Babayev, T.G. Mammadov, Identification of intrinsic deep level defects responsible for electret behavior in TlGaSe2 layered semiconductor. Phys. B Condens. Matter. 483, 82–89 (2016). https://doi.org/10.1016/j.physb.2015.12.004

    Article  ADS  Google Scholar 

  50. M.Y. Seyidov, R.A. Suleymanov, E. Balaban, Y. Şale, Imprint electric field controlled electronic transport in TlGaSe2 crystals. J. Appl. Phys. 114, 93706 (2013). https://doi.org/10.1063/1.4819396

    Article  Google Scholar 

  51. M.Y. Seyidov, Y. Sahin, D. Erbahar, R.A. Suleymanov, Electret states and current oscillations in the ferroelectric semiconductor TlGaSe2. Phys. Status Solidi. 203, 3781–3787 (2006). https://doi.org/10.1002/pssa.200622236

    Article  ADS  Google Scholar 

  52. A.K. Fedotov, M.I. Tarasik, I.A. Svito, P. Zhukowski, T.N. Koltunowicz, T.G. Mammadov, M.Y. Seyidov, R.A. Suleymanov, V. Grivickas, V. Bicbaevas, Electrical properties of the layered single crystals TlGaSe2 and TlInS2. (2012) https://elib.bsu.by/handle/123456789/27440.

  53. J.M.D. Coey, Magnetism and magnetic materials (Cambridge University Press, Cambridge, UK, 2010)

    Google Scholar 

  54. B.D. Cullity, C.D. Graham 2009 Introduction to Magnetic Materials. A John Wiley & Sons. 2nd Edit.

  55. J.K. Furdyna, J. Kossut, Eds Semiconductors and Semimetals vol. 25 (Boston: Academic) Furdyna JK 1988 J, 1988.

  56. D.C. Mattis, Theory Of magnetism made simple, the: an introduction to physical concepts and to some useful mathematical methods. World Sci. Pub. Comp. (2006). https://doi.org/10.1142/5372

    Article  Google Scholar 

  57. J.C. Bonner, M.E. Fisher, Linear magnetic chains with anisotropic coupling. Phys. Rev. 135, A640 (1964). https://doi.org/10.1103/PhysRev.135.A640

    Article  ADS  Google Scholar 

  58. X. Song, S.N. Schneider, G. Cheng, J.F. Khoury, M. Jovanovic, N. Yao, L.M. Schoop, Kinetics and evolution of magnetism in soft-chemical synthesis of CrSe2 from KCrSe2. Chem. Mater. 33, 8070–8078 (2021). https://doi.org/10.1021/acs.chemmater.1c02620

    Article  Google Scholar 

  59. E. Okumuş, S.T. Öztürk, M.H.Y. Seyidov, Magnetic properties of manganese doped TlInS2 layered semiconductor: Diamagnetic to paramagnetic transitions at low temperatures, in: AIP Conf. Proc., AIP Publishing LLC. 30028 (2019). https://doi.org/10.1063/1.5135426.

  60. G. Bertotti, Hysteresis in magnetism: for physicists, materials scientists, and engineers (Academic Press San Diego, London Boston New York Sydney Tokyo Toronto, 1998)

    Google Scholar 

  61. E.D. Torre, Magnetic hysteresis, New York, (1999).

  62. G.C. Hadjipanayis, Magnetic Hysteresis in Novel Magnetic Materials (Springer, Dordrecht, 1997)

    Book  Google Scholar 

  63. A. Ślawska-Waniewska, M. Gutowski, H.K. Lachowicz, T. Kulik, H. Matyja, Superparamagnetism in a nanocrystalline Fe-based metallic glass. Phys. Rev. B. 46, 14594 (1992). https://doi.org/10.1103/PhysRevB.46.14594

    Article  ADS  Google Scholar 

  64. A. Hernando, T. Kulik, Exchange interactions through amorphous paramagnetic layers in ferromagnetic nanocrystals. Phys. Rev. B. 49, 7064 (1994). https://doi.org/10.1103/PhysRevB.49.7064

    Article  ADS  Google Scholar 

  65. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R Soc. London. Ser. A Math. Phys. Sci. 240, 599–642 (1948). https://doi.org/10.1109/TMAG.1991.1183750

    Article  ADS  MATH  Google Scholar 

  66. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the draft version of the manuscript. SG: planned and performed the experiments, carried out data analysis, performed calculations, wrote original draft. TGM and AIN: synthesized the samples. SB: Conceptualization of theoretical section, Formal analysis, Investigation, Writing—original draft, Visualization. FM: Conceptualization of experimental section, Investigation, Validation, Writing—review & editing, Supervision. MYS: Conceptualization of experimental section, Investigation, Validation, Writing—review & editing wrote the manuscript draft.

Corresponding author

Correspondence to Serdar Gökçe.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2370 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökçe, S., Mammadov, T., Najafov, A. et al. Magnetic Ordering in TlGa1-xFexSe2 Dilute Magnetic Semiconductors with Various Fe Dilution Ratios. Appl Magn Reson 54, 535–559 (2023). https://doi.org/10.1007/s00723-023-01539-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01539-6

Navigation