Skip to main content
Log in

Electron Spin Relaxation Rates of Radicals in Irradiated Boron Oxides

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The boron–oxygen hole center (BOHC) that is formed by irradiation of boron oxides has previously been characterized extensively by continuous wave and pulsed electron paramagnetic resonance. We now report that the electron spin relaxation rates for the BOHC in irradiated high purity B2O3, practical grade B2O3, and sodium tetraborate Na2B4O7 exhibit substantial sample dependence. Because of the low magnetic moments for the boron nuclei, the spin echo dephasing is dominated by electron–electron interaction (T2) instead of the nuclear spin diffusion that dominates dephasing for organic radicals in lattices with high proton concentrations. The higher local concentration of defects in a sample of practical grade B2O3 than in a sample of reagent grade B2O3, shortens Tm (spin echo dephasing) and causes extensive cross relaxation contributions to T1 (spin lattice relaxation) at 10 K. At temperatures below about 60 K T1 is shorter for the BOHC in B2O3 than in sodium tetraborate or for the radical formed by irradiation of calcium metaborate. T1 for the BOHC and the radical in irradiated calcium metaborate are shorter than for other irradiated solids including glycylglycine, l-alanine and the E´ center in quartz. The temperature dependence of T1 for the BOHC in B2O3 is dominated by the Raman process with a lower Debye temperature than for the radical formed by irradiation of calcium metaborate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The datasets generated during and analysed during the current study are available from the corresponding author in Bruker Xepr format on reasonable request.

References

  1. M. Mutailipu, K.R. Poeppelmeier, S. Pan, Chem. Rev. 121, 1130–1202 (2021)

    Article  Google Scholar 

  2. A. Takada, C.R.A. Catlow, G.D. Price, Phys. Chem. Glasses 44, 147–149 (2003)

    Google Scholar 

  3. A.F. Wells, Structural Inorganic Chemistry, 5th edn. (Oxford University Press, Oxford, 1984), p.1065ff

    Google Scholar 

  4. D.L. Griscom, J. Noncryst. Solids 13, 251–285 (1973)

    Article  ADS  Google Scholar 

  5. D.L. Griscom, P.C. Taylor, D.A. Ware, P.J. Bray, J. Chem. Phys. 48, 5158–5173 (1968)

    Article  ADS  Google Scholar 

  6. G. Kordas, J. Non-Cryst. Solids 260, 75–82 (1999)

    Article  ADS  Google Scholar 

  7. G. Kordas, J. Noncryst. Solids 345 & 346, 45–49 (2004)

    Article  Google Scholar 

  8. G. Kordas, Phys. Chem. Glasses 41, 325–329 (2000)

    Google Scholar 

  9. G. Kordas, Phys. Chem. Glasses 41, 358–361 (2000)

    Google Scholar 

  10. G. Kordas, J. Noncryst. Solids 331, 122–127 (2003)

    Article  ADS  Google Scholar 

  11. G. Kordas, Phys. Rev. B 68, 024202 (2003)

    Article  ADS  Google Scholar 

  12. G. Kordas, D. Goldfarb, J. Chem. Phys. 129, 154502 (2008)

    Article  ADS  Google Scholar 

  13. Y. Deligiannakis, L. Astrakas, G. Kordas, R.A. Smith, Phys. Rev. B 58, 11420–11434 (1998)

    Article  ADS  Google Scholar 

  14. I.A. Shkrob, V.F. Tarasov, J. Chem. Phys. 113, 10723–10732 (2000)

    Article  ADS  Google Scholar 

  15. I.A. Shkrob, B.M. Tadjikov, A.D. Trifunac, J. Noncryst. Solids 262, 6–34 (2000)

    Article  ADS  Google Scholar 

  16. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  17. I.M. Brown, in Time Domain Electron Spin Resonance. ed. by L. Kevan, R.N. Schwartz (Wiley, New York, 1979), pp.195–229

    Google Scholar 

  18. A. Zecevic, G.R. Eaton, S.S. Eaton, M. Lindgren, Mol. Phys. 95, 1255–1263 (1998)

    Article  ADS  Google Scholar 

  19. S.S. Eaton, K. Huber, H. Elajaili, J. McPeak, G.R. Eaton, L.E. Longobardi, D.W. Stephan, J. Magn. Reson. 276, 7–13 (2017)

    Article  ADS  Google Scholar 

  20. S.S. Eaton, G.R. Eaton, in EPR Spectroscopy: Fundamentals and Methods. ed. by D. Goldfarb, S. Stoll (Wiley, Chichester, 2018), pp.175–192

    Google Scholar 

  21. J.W. Orton, Electron Paramagnetic Resonance: An Introduction to Transition Group Ions in Crystals (Gordon and Breach, New York, 1968)

    Google Scholar 

  22. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970)

    Google Scholar 

  23. J. Murphy, Phys. Rev. 145, 241–247 (1966)

    Article  ADS  Google Scholar 

  24. J.R. Klauder, P.W. Anderson, Phys. Rev. 125, 912–932 (1962)

    Article  ADS  Google Scholar 

  25. S.S. Eaton, G.R. Eaton, J. Magn. Reson. 102, 354–356 (1993)

    Article  ADS  Google Scholar 

  26. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679–712 (1948)

    Article  ADS  Google Scholar 

  27. W.B. Mims, in Electron Paramagnetic Resonance. ed. by S. Geschwind (Plenum Press, New York, 1972), pp.263–351

    Chapter  Google Scholar 

  28. W.B. Mims, Phys. Rev. 168, 370–389 (1968)

    Article  ADS  Google Scholar 

  29. J. Zimbrick, L. Kevan, J. Chem. Phys. 47, 5000–5008 (1967)

    Article  ADS  Google Scholar 

  30. M. Brustolon, A. Barbon, in EPR of Free Radicals In Solids I: Trends in Methods and Applications. ed. by A. Lund, M. Shiotani (Springer, Dordrecht, 2013), pp.51–102

    Chapter  Google Scholar 

  31. A.M. Raitsimring, K.M. Salikhov, Bull. Magn. Reson. 7, 184–217 (1985)

    Google Scholar 

  32. M.K. Bowman, A.G. Maryasov, Y.D. Tsvetkov, in Application of EPR in Radiation Research. ed. by A. Lund, M. Shiotani (Springer, Heidelberg, 2014), pp.591–616

    Google Scholar 

  33. T. Ngendahimana, R. Ayikpoe, J.A. Latham, G.R. Eaton, S.S. Eaton, J. Inorg. Biochem. 201, 110806 (2019)

    Article  Google Scholar 

  34. J.G. Castle, D.W. Feldman, P.G. Klemens, R.A. Weeks, Phys. Rev. 130, 577–588 (1963)

    Article  ADS  Google Scholar 

  35. J.R. Harbridge, S.S. Eaton, G.R. Eaton, J. Phys. Chem. A 107, 598–610 (2003)

    Article  Google Scholar 

  36. P. Feng, Y. Wang, X. Rong, J.-H. Su, C. Ju, J. Du, J. Phys. Lett. A. 376, 2195–2199 (2012)

    Article  ADS  Google Scholar 

  37. R.H. Silsbee, J. Appl. Phys. 32, 1459–1462 (1961)

    Article  ADS  Google Scholar 

  38. M. Katayama, W. Gordy, J. Chem. Phys. 35, 117–122 (1961)

    Article  ADS  Google Scholar 

  39. M.Z. Heydari, E. Malinen, E.O. Hole, E. Sagstuen, J. Phys. Chem. A 106, 8971–8977 (2002)

    Article  Google Scholar 

  40. H. Sato, V. Kathirvelu, A.J. Fielding, S.E. Bottle, J.P. Blinco, A.S. Micallef, S.S. Eaton, G.R. Eaton, Mol. Phys. 105, 2137–2151 (2007)

    Article  ADS  Google Scholar 

  41. Y. Cheng, J. Feng, F. Wang, F. Liang, G. Zhang, Z. Lin, H. Yu, H. Zhang, Y. Wu, Inorg. Chem. 61, 10228–10233 (2022)

    Article  Google Scholar 

  42. S. Huang, M. Pink, T. Ngendahimana, S. Rajca, G.R. Eaton, S.S. Eaton, A. Rajca, J. Org. Chem. 86, 13636–13643 (2021)

    Article  Google Scholar 

  43. V. Kathirvelu, H. Sato, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 198, 111–120 (2009)

    Article  ADS  Google Scholar 

  44. S.N. Mahapatro, T.A. Hovey, T. Ngendahimana, S.S. Eaton, G.R. Eaton, J. Inorg. Biochem. 229, 111732 (2022)

    Article  Google Scholar 

  45. E. Perez-Enciso, M.A. Ramos, S. Vieira, Phys. Rev. B 56, 32–35 (1997)

    Article  ADS  Google Scholar 

  46. M.S. Gaafar, S.Y. Marzouk, H.A. Zayed, L.I. Soliman, A.H.S. El-Deen, Curr. Appl. Phys. 13, 152–158 (2013)

    Article  ADS  Google Scholar 

  47. A. Rulmont, M. Almou, Spectrochim. Acta 45A, 603–610 (1989)

    Article  ADS  Google Scholar 

  48. G. Kordas, in Structure of glasses studied by one- and two-dimensional FT-EPR and pulse ENDOR spectroscopies, ed. by T. Yoko. Proceedings of 20th International Congress on Glass, Kyoto, Japan (2004). ISBN: 10.012/1-10.012/6

  49. G. Kordas, J. Noncryst. Solids 351, 2358–2360 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Professor Patrick Lenahan, Pennsylvania State University for irradiating samples with Co-60 γ to 200 kGy (20 MRad). We thank Amber Harshman, Justin Bell, and Professor Thomas Johnson, Colorado State University for irradiating samples to 10 or 20 kGy with Cs-137 in the exploratory stages of this project in 2017 and 2018. This work was funded in part by the University of Denver.

Author information

Authors and Affiliations

Authors

Contributions

TN, WM, SSE and GRE performed experiments, analyzed data, and wrote drafts of the manuscript. AC analyzed CW spectra. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gareth R. Eaton.

Ethics declarations

Conflict of Interest

The authors have no completing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngendahimana, T., Moore, W., Canny, A. et al. Electron Spin Relaxation Rates of Radicals in Irradiated Boron Oxides. Appl Magn Reson 54, 359–370 (2023). https://doi.org/10.1007/s00723-022-01514-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01514-7

Navigation