Skip to main content
Log in

Anisotropic g-Tensor and Abragam’s Dipole Alphabet: New Words

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The impact of g-tensor anisotropy on the dipole–dipole interaction (DDI) of Kramers paramagnetic centers (PCs) with spins of ½ is theoretically considered in the point dipole limit. The magnetic moment may be expressed in terms of the tensor G = gT.g and the signature of the g-tensor (sign of its determinant). This means that the DDI spin Hamiltonian depends only on the G of the PCs involved and on their respective g-tensor signatures. Abragam’s dipole alphabet for isotropic PCs consists of six letters by Abragam (The principles of nuclear magnetism, Clarendon Press, Oxford, 1961), each letter a product of a spin operator and a spatial coordinate. Pairs of letters correspond to zero-, single-, and double-quantum coherences. In the case of like anisotropic spins, the dipole alphabet has the same structure but with different coordinate factors that depend on the tensor G and its orientation in the laboratory frame. In the general case, anisotropic spins have nine letters in their dipole alphabet. Analytic expressions for all the letters are obtained. The DDI spin Hamiltonian for anisotropic PCs can contain terms having the appearance of isotropic exchange-like and quadrupolar-like interactions resulting entirely from the DDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Milov, A.G. Maryasov, Yu.D. Tsvetkov, Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Applied Magn. Reson. 15, 107–143 (1998)

    Article  Google Scholar 

  2. Yu.D. Tsvetkov, A.D. Milov, A.G. Maryasov, Pulsed electron double resonance (PELDOR) as EPR spectroscopy in nanometer range. Russian Chem. Rev. 77, 487–520 (2008)

    Article  ADS  Google Scholar 

  3. Y.D. Tsvetkov, M.K. Bowman, Y.A. Grishin, Pulsed Electron-Electron Double Resonance (Springer Nature, Switzerland, 2019)

    Book  Google Scholar 

  4. P.P. Borbat, J.H. Freed, Dipolar spectroscopy – single-resonance methods. eMagRes 6, 465–494 (2017). https://doi.org/10.1002/9780470034590.emrstm1519

    Article  Google Scholar 

  5. G. Jeschke, Dipolar spectroscopy – double-resonance methods. eMagRes 5, 1459–1476 (2016). https://doi.org/10.1002/9780470034590.emrstm1518

    Article  Google Scholar 

  6. P. Widder, J. Schuck, D. Summerer, M. Drescher, Combining site-directed spin labeling in vivo and in-cell EPR distance determination. Phys. Chem. Chem. Phys. 22, 4875–4879 (2020)

    Article  Google Scholar 

  7. E. Bordignon, EPR spectroscopy of nitroxide spin probes. eMagRes 6, 235–254 (2017). https://doi.org/10.1002/9780470034590.emrstm1513

    Article  Google Scholar 

  8. S.N. Trukhan, V.F. Yudanov, V.M. Tormyshev, O.Y. Rogozhnikova, D.V. Trukhin, M.K. Bowman, M.D. Krzyaniak, H. Chen, O.N. Martyanov, J. Magn. Reson. 233, 29 (2013)

    Article  ADS  Google Scholar 

  9. X. Bogetti, Z. Hasanbasri, H.R. Huntera, S. Saxena, An optimal acquisition scheme for Q-band EPR distance measurements using Cu2+-based protein labels. Phys. Chem. Chem. Phys. 24, 14727–14739 (2022)

    Article  Google Scholar 

  10. M.R. Cohen, V. Frydman, P. Milko, M.A. Iron, E.H. Abdelkader, M.D. Lee, J.D. Swarbrick, A. Raitsimring, G. Otting, B. Graham, A. Feintuch, D. Goldfarb, Phys. Chem. Chem. Phys. 18, 12847–12859 (2016)

    Article  Google Scholar 

  11. M.K. Bowman, E.A. Berry, A.G. Roberts, D.M. Kramer, Orientation of the g-tensor axes of the rieske subunit in the cytochrome bc1 complex. Biochemistry 43, 430–436 (2004)

    Article  Google Scholar 

  12. P. Demay-Drouhard, H.Y.V. Ching, D. Akhmetzyanov, R. Guillot, L.C. Tabares, H.C. Bertrand, C. Policar, A bis-manganese(II)–DOTA complex for pulsed dipolar spectroscopy. ChemPhysChem 17, 2066–2078 (2016)

    Article  Google Scholar 

  13. T. Yamane, K. Sugisaki, T. Nakagawa, H. Matsuoka, T. Nishio, S. Kinjyo, N. Mori, S. Yokoyama, C. Kawashima, N. Yokokura et al., Analyses of sizable ZFS and magnetic tensors of high spin metallocomplexes. Phys. Chem. Chem. Phys. 19, 24769–24791 (2017)

    Article  Google Scholar 

  14. A.G. Maryasov, M.K. Bowman, Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½. J. Magn. Reson. 221, 69–75 (2012)

    Article  ADS  Google Scholar 

  15. A.G. Maryasov, M.K. Bowman, Bloch equations for anisotropic paramagnetic centers with spin of ½. J. Magn. Reson. 233, 80–86 (2013)

    Article  ADS  Google Scholar 

  16. M.K. Bowman, H. Chen, A.G. Maryasov, Fourier-transform EPR. eMagRes 6, 387–406 (2017). https://doi.org/10.1002/9780470034590.emrstm1514

    Article  Google Scholar 

  17. A.G. Maryasov, M.K. Bowman, Anisotropic S = ½ Kramers Doublets: g-matrix, the tensor G, and dynamics of the spin and magnetic moment. Applied Magn. Reson. 51, 1201–1210 (2020)

    Article  Google Scholar 

  18. A.F. Bedilo, A.G. Maryasov, Electron spin resonance of dipole-coupled anisotropic pairs in disordered systems. Secular approximation for point dipoles. J. Magn. Reson. A 116, 87–96 (1995)

    Article  ADS  Google Scholar 

  19. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)

    Google Scholar 

  20. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1986). (Chapter 3 and Chapter 9)

    Google Scholar 

  21. M.H. Levitt, Spin Dynamics (Wiley, Chichester, 2008)

    Google Scholar 

  22. D. Abdullin, AnisoDipFit: simulation and fitting of pulsed EPR dipolar spectroscopy data for anisotropic spin centers. Applied Magn. Reson. 51, 725–748 (2020)

    Article  Google Scholar 

  23. A.G. Maryasov, S.A. Dzuba, K.M. Salikhov, Spin polarization effects on the phase relaxation induced by dipole-dipole interactions. J. Magn. Reson. 50, 432–450 (1982)

    ADS  Google Scholar 

  24. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255 (1981)

    ADS  Google Scholar 

  25. V.V. Kurshev, A.M. Raitsimring, K.M. Salikhov, Fiz. Tverd. Tela 30, 420 (1988)

    Google Scholar 

  26. A.G. Maryasov, M.K. Bowman, Yu.D. Tsvetkov, Dipole-Dipole interactions of high-spin paramagnetic centers in disordered systems. Appl. Magn. Reson. 30, 683 (2006)

    Article  Google Scholar 

  27. L.F. Chibotaru, A. Ceulemans, H. Bolvin, Unique definition of the zeeman-splitting g tensor of a Kramers doublet. Phys. Rev. Lett. 101, 033003 (2008)

    Article  ADS  Google Scholar 

  28. V.A. Tran, F. Neese, J. Chem. Phys. 153, 054105 (2020)

    Article  ADS  Google Scholar 

  29. A.G. Maryasov, M.K. Bowman, M.V. Fedin, S.L. Veber, Theoretical basis for switching a Kramers single molecular magnet by circularly-polarized radiation. Materials 12, 3865 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant 14.W03.31.0034).

Author information

Authors and Affiliations

Authors

Contributions

AGM and MKB wrote the main manuscript text, AGM prepared supporting information, and MKB made estimates of exchange-like terms for different PCs and improved English. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Alexander G. Maryasov.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 249 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryasov, A.G., Bowman, M.K. Anisotropic g-Tensor and Abragam’s Dipole Alphabet: New Words. Appl Magn Reson 54, 29–45 (2023). https://doi.org/10.1007/s00723-022-01512-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01512-9

Navigation