Skip to main content
Log in

Magnetic Properties of La0.81Sr0.19Mn0.9Fe0.1−xZnxO3 (x = 0, x = 0.05)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic properties of polycrystalline La0.81Sr0.19Mn0.9Fe0.1−xZnxO3 (x = 0, 0.05) have been investigated by means of electron spin resonance, magnetic susceptibility, and Mössbauer measurements. Both samples show a clear ferromagnetic transition. The Curie temperature TC decreases on increasing Fe content (x = 0.05—TC = 222 K; x = 0—TC = 148 K). Mössbauer studies indicate that Fe in these compounds is in the trivalent high-spin state. The temperature evolution of the Mössbauer spectra at low temperatures (T < TC) is typical for ferromagnetic clusters with a wide distribution in size and magnetic correlation length. The inverse susceptibility of all the samples deviates from the Curie–Weiss law above TC, indicating the presence of fluctuations on approaching magnetic order. An anomalous downturn of the inverse susceptibility for x = 0.05 significantly above TC and the concomitant observation of ferromagnetic resonance signals coexisting with the paramagnetic resonance up to approximately room temperature, is caused by a Griffiths-like behavior. This regime is characterized by the coexistence of ferromagnetic entities within the globally paramagnetic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data that were used and analyzed are presented in the article.

References

  1. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200(1), 1–23 (1999). https://doi.org/10.1016/S0304-8853(99)00352-2

    Article  ADS  Google Scholar 

  2. K. Ahn, X.W. Wu, K. Liu, C.L. Chien, Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Phys. Rev. B 54(21), 15299 (1996). https://doi.org/10.1103/physrevb.54.15299

    Article  ADS  Google Scholar 

  3. G. Wang, Z.R. Zhao, H.L. Li, X.F. Zhang, Magnetocaloric effect and critical behavior in Fe-doped La0.67Sr0.33Mn1xFexO3 manganites. Ceram. Int. 42(16), 18196 (2016). https://doi.org/10.1016/j.ceramint.2016.08.138

    Article  Google Scholar 

  4. V. Zakhvalinskii, R. Laiho, A.V. Lashkul, K.G. Lisunov, E. Lähderanta, Yu.S. Nekrasova, P.A. Petrenko, Phase separation, ferromagnetism and magnetic irreversibility in La1xSrxMn1yFeyO3. J. Magn. Magn. Mater. 323(16), 2186–2191 (2011). https://doi.org/10.1016/j.jmmm.2011.03.028

    Article  ADS  Google Scholar 

  5. J. Coey, M. Viret, S. von Molnar, Mixed-valence manganites. Adv. Phys. 48(2), 167 (1999). https://doi.org/10.1080/000187399243455

    Article  ADS  Google Scholar 

  6. Z.Y. Seidov, I.V. Yatsyk, F.G. Vagizov, V.A. Shustov, A.G. Badelin, V.K. Karpasyuk, M.J. Najafzade, I.N. Ibrahimov, SKh. Estemirova, H.-A. Krug von Nidda, R.M. Eremina, Local magnetic properties of La0.83Sr0.17Mn0.9Fe0.1−xZnxO3. J. Magn. Magn. Mater. 552, 169190 (2022)

    Article  Google Scholar 

  7. J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto, T. Hashimotoand, Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics 129(1–4), 163–177 (2000). https://doi.org/10.1016/S0167-2738(99)00323-9

    Article  Google Scholar 

  8. Maud, Materials analysis using diffraction. http://maud.radiographema.eu.

  9. D. Popov, T.P. Gavrilova, I.F. Gilmutdinov, M.A. Cherosov, V.A. Shustov, E.M. Moshkina, L.N. Bezmaternykh, R.M. Eremina, Magnetic properties of ludwigite Mn2.25Co0.75BO5. J. Phys. Chem. Solids 148, 109695 (2021). https://doi.org/10.1016/j.jpcs.2020.109695

    Article  Google Scholar 

  10. J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R.M. Eremina, V.A. Ivanshin, A.M. Balbashov, G. Jug, A. Loidl, T. Kimura, Y. Tokura, Observation of a Griffiths phase in paramagnetic La1xSrxMnO3. Phys. Rev. Lett. 95(12), 257202 (2005). https://doi.org/10.1103/PhysRevLett.95.257202

    Article  ADS  Google Scholar 

  11. R. Eremina, I.I. Fazlizhanov, I.V. Yatsyk, K.R. Sharipov, A.V. Pyataev, H.-A. Krug von Nidda, N. Pascher, A. Loidl, K.V. Glazyrin, Y.M. Mukovskii, Phase separation in paramagnetic Eu0.6La0.4xSrxMnO3. Phys. Rev. B 84(6), 064410 (2011). https://doi.org/10.1103/PhysRevB.84.064410

    Article  ADS  Google Scholar 

  12. N. Rama, M.S. Ramachandra Rao, V. Sankaranarayanan, P. Majewski, S. Gepraegs, M. Opel, R. Gross, A-site-disorder-dependent percolative transport and Griffiths phase in doped manganites. Phys. Rev. B 70(22), 224424 (2004). https://doi.org/10.1103/PhysRevB.70.224424

    Article  ADS  Google Scholar 

  13. X. Zheng, T. Gao, W. Jing, X. Wang, Y. Liua, B. Chen, H. Dong, Z. Chen, S. Cao, C. Cai, V.V. Marchenkov, Evolution of Griffiths phase and spin reorientation in perovskite manganites. J. Magn. Magn. Mater. 491(1), 165611 (2019). https://doi.org/10.1016/j.jmmm.2019.165611

    Article  Google Scholar 

  14. M. Salamon, P. Lin, S.H. Chun, Colossal magnetoresistance is a Griffiths singularity. Phys. Rev. Lett. 88(19), 197203 (2002). https://doi.org/10.1103/PhysRevLett.88.197203

    Article  ADS  Google Scholar 

  15. M.B. Salamon, S.H. Chun, Griffiths singularities and magnetoresistive manganites. Phys. Rev. B 68(1), 014411 (2003). https://doi.org/10.1103/PhysRevB.68.014411

    Article  ADS  Google Scholar 

  16. A.K. Pramanik, A. Banerjee, Griffiths phase and its evolution with Mn site disorder in the half-doped manganite Pr0.5Sr0.5Mn1yGayO3 (y = 0.0,0.025, and 0.05). Phys. Rev. B 81(2), 024431 (2010). https://doi.org/10.1103/PhysRevB.81.024431

    Article  ADS  Google Scholar 

  17. A. Silva, K.L. Salcedo Rodriguez, C.P. Contreras Medrano, G.S.G. Lourenco, M. Boldrin, E. Baggio-Saitovitch, L. Bufaical, Griffiths phase and spontaneous exchange bias in La1.5Sr0.5CoMn0.5Fe0.5O6. J. Phys. Condens. Matter 33(6), 065804 (2020). https://doi.org/10.1088/1361-648X/abc595

    Article  ADS  Google Scholar 

  18. S. Thota, S. Ghosh, R. Maruthi, D.C. Joshi, R. Medwal, R.S. Rawat, M.S. Seehra, Magnetic ground state and exchange interactions in the Ising chain ferromagnet CoNb2O6. Phys. Rev. B 103(6), 064415 (2021). https://doi.org/10.1103/PhysRevB.103.064415

    Article  ADS  Google Scholar 

  19. S. Zhou, Y. Guo, J. Zhao, L. He, L. Shi, Size-induced Griffiths phase and second-order ferromagnetic transition in Sm0.5Sr0.5MnO3 nanoparticles. J. Phys. Chem. C 115, 1535 (2011). https://doi.org/10.1021/jp108553r

    Article  Google Scholar 

  20. S. Andronenko, A.A. Rodionov, A.V. Fedorova, S.K. Misra, Electron paramagnetic resonance study of (La0.33Sm0.67)0.67Sr0.33xBaxMnO3 (x < 0.1): Griffiths phase. J. Magn. Magn. Mater. 326, 151–156 (2013). https://doi.org/10.1016/j.jmmm.2012.08.017

    Article  ADS  Google Scholar 

  21. A. Kumar, R.K. Reddy, A.K. Bhatnagar, Magnetization and ESR studies of La0.67 (Ca1xMgx)0.33 MnO3 systems. J. Alloy. Compd. 639, 139–144 (2015). https://doi.org/10.1016/j.jallcom.2015.03.028

    Article  Google Scholar 

  22. R. Eremina, I.V. Yatsyk, Y.M. Mukovskii, H.-A. Krug von Nidda, A. Loidl, Determination of the region of existence of ferromagnetic nanostructures in the paraphase of La1xBaxMnO3 by the EPR method. JETP Lett. 85(1), 51 (2007). https://doi.org/10.1134/S0021364007010109

    Article  ADS  Google Scholar 

  23. S. Misra, S.I. Andronenko, S. Asthana, D. Bahadur, A variable temperature EPR study of the manganites (La1/3Sm2/3)2/3SrxBa0.33-xMnO3 (x = 0.0, 0.1, 0.2, 0.33): small polaron hopping conductivity and Griffiths phase. J. Magn. Magn. Mater. 322(19), 2902 (2010). https://doi.org/10.1016/j.jmmm.2010.05.003

    Article  ADS  Google Scholar 

  24. D.L. Huber, M.S. Seehra, Contribution of the spin-phonon interaction to the paramagnetic resonance linewidth of CrBr3. J. Phys. Chem. Solids 36(7–8), 723–725 (1975). https://doi.org/10.1016/0022-3697(75)90094-3

    Article  ADS  Google Scholar 

  25. M.E. Matsnev, V.S. Rusakov, SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf. Proc. 1489, 178–185 (2012). https://doi.org/10.1063/1.4759488

    Article  ADS  Google Scholar 

  26. F. Menil, Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedral. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (–Fe) (where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids 46(7), 763–789 (1985). https://doi.org/10.1016/0022-3697(85)90001-0

    Article  ADS  Google Scholar 

  27. E. Murad, J. Cashion, Mössbauer spectroscopy of environmental materials and their industrial utilization (Springer+Business Media, New York, 2004), p.418. https://doi.org/10.1007/978-1-4419-9040-2

    Book  Google Scholar 

  28. K. De, R. Ray, R.N. Panda, S. Giri, H. Nakamura, T. Kohara, The effect of Fe substitution on magnetic and transport properties of LaMnO3. J. Magn. Magn. Mater. 288, 339–346 (2005). https://doi.org/10.1016/j.jmmm.2004.09.118

    Article  ADS  Google Scholar 

  29. M. Pissas, G. Kallias, E. Devlin, A. Simopoulos, D. Niarchos, Mössbauer study of La0.75Ca0.25Mn0.98Fe0.02O3 compound. J. Appl. Phys. 81, 5770–5772 (1997). https://doi.org/10.1063/l.364722

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dana Vieweg for SQUID measurements.

Funding

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Transregional Collaborative Research Center TRR 80 "From Electronic Correlations to Functionality", project no. 107745057 (Augsburg, Munich, Stuttgart). The work of Z.Y. Seidov, M.M. Tagiev and D.S. Abdinov was supported by the Science Development Foundation under the President of the Republic Azerbaijan Grant EIF-BGM-4-RFTF-1/2017–21/03/1-M-03. Electron spin resonance measurements (I.V. Yatsyk, V.A. Shustov, R.M. Eremina) were performed with the financial support from the government assignment for FRC Kazan Scientific Center of RAS.

Author information

Authors and Affiliations

Authors

Contributions

RE and ZS: conceptualization, methodology, formal analysis, original draft preparation, writing—review and editing, supervision; FV: investigation by Mössbauer method, methodology, formal analysis, writing—original draft; IY: Investigation by ESR method, methodology, formal analysis; VS: investigation by X-ray method, methodology, formal analysis; AB, VK, and SE: sample synthesis, methodology, characterization; DA and MT: Resources, visualization; H-A KvN: project administration, investigation of the magnetization, writing—reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Z. Y. Seidov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, R.M., Yatsyk, I.V., Seidov, Z.Y. et al. Magnetic Properties of La0.81Sr0.19Mn0.9Fe0.1−xZnxO3 (x = 0, x = 0.05). Appl Magn Reson 54, 449–461 (2023). https://doi.org/10.1007/s00723-022-01510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01510-x

Navigation