Skip to main content
Log in

Coupling Sub-nanoliter BDPA Organic Radical Spin Ensembles with YBCO Inverse Anapole Resonators

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We report the development and test of planar microwave Inverse Anapole Resonators (IARs) made of superconducting Yttrium Barium Copper Oxide (YBCO) for electron spin resonance spectroscopy on small samples. We first characterize our resonators in zero field and then by carrying out transmission spectroscopy on a diluted \(\alpha ,\gamma \)-bisdiphenylene-\(\beta \)-phenylally (BDPA) organic radical spin ensemble in an applied magnetic field. These IARs allow us to carry out electron spin resonance spectroscopy both in continuous-wave and pulsed-wave mode, and to estimate the spin memory time of BDPA. The comparison with the results obtained for the same sample on typical linear coplanar resonators shows an improvement by \(\approx 2\text { - up to}\,3\) – orders of magnitude in spin sensitivity, with effective sensing volumes below 1 nanoliter. The best sensitivity we achieved is \(S\approx \,10^{7}\,\text {spin}/\sqrt{\mathrm{Hz}}\) in the pulsed-wave regime. These results compare well with similar experiments reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.J.L. Morton, P. Bertet, Storing quantum information in spins and high-sensitivity esr. J. Magn. Reson. 287, 128–139 (2018). https://doi.org/10.1016/j.jmr.2017.11.015

    Article  ADS  Google Scholar 

  2. A.A. Clerk, K.W. Lehnert, P. Bertet, J.R. Petta, Y. Nakamura, Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16(3), 257–267 (2020)

    Article  Google Scholar 

  3. A. Imamoğlu, Cavity qed based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009). https://doi.org/10.1103/PhysRevLett.102.083602

    Article  ADS  Google Scholar 

  4. G. Boero, M. Bouterfas, C. Massin, F. Vincent, P.-A. Besse, R.S. Popovic, A. Schweiger, Electron-spin resonance probe based on a 100 \(\mu \)m planar microcoil. Rev. Sci. Instrum. 74(11), 4794–4798 (2003). https://doi.org/10.1063/1.1621064

    Article  ADS  Google Scholar 

  5. D.I. Schuster, A.P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J.J.L. Morton, H. Wu, G.A.D. Briggs, B.B. Buckley, D.D. Awschalom, R.J. Schoelkopf, High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010). https://doi.org/10.1103/PhysRevLett.105.140501

    Article  ADS  Google Scholar 

  6. Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010). https://doi.org/10.1103/PhysRevLett.105.140502

    Article  ADS  Google Scholar 

  7. R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer, Cavity qed with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011). https://doi.org/10.1103/PhysRevLett.107.060502

    Article  ADS  Google Scholar 

  8. S. Probst, H. Rotzinger, A.V. Ustinov, P.A. Bushev, Microwave multimode memory with an erbium spin ensemble. Phys. Rev. B 92, 014421 (2015). https://doi.org/10.1103/PhysRevB.92.014421

    Article  ADS  Google Scholar 

  9. C.W. Zollitsch, K. Mueller, D.P. Franke, S.T.B. Goennenwein, M.S. Brandt, R. Gross, H. Huebl, High cooperativity coupling between a phosphorus donor spin ensemble and a superconducting microwave resonator. Appl. Phys. Lett. 107(14), 142105 (2015). https://doi.org/10.1063/1.4932658

    Article  ADS  Google Scholar 

  10. J. O’Sullivan, O.W. Kennedy, C.W. Zollitsch, M. Šim ėnas, C.N. Thomas, L.V. Abdurakhimov, S. Withington, J.J.L. Morton, Spin-resonance linewidths of bismuth donors in silicon coupled to planar microresonators. Phys. Rev. Appl. 14, 064050 (2020). https://doi.org/10.1103/PhysRevApplied.14.064050

    Article  ADS  Google Scholar 

  11. C. Bonizzoni, A. Ghirri, M. Affronte, Coherent coupling of molecular spins with microwave photons in planar superconducting resonators. Adv. Phys. X 3(1), 1435305 (2018)

    Google Scholar 

  12. C. Bonizzoni, A. Ghirri, M. Atzori, L. Sorace, R. Sessoli, M. Affronte, Coherent coupling between vanadyl phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits. Sci. Rep. 7(1), 13096 (2017)

    Article  ADS  Google Scholar 

  13. A. Ghirri, C. Bonizzoni, F. Troiani, N. Buccheri, L. Beverina, A. Cassinese, M. Affronte, Coherently coupling distinct spin ensembles through a high-\({T}_{c}\) superconducting resonator. Phys. Rev. A 93, 063855 (2016). https://doi.org/10.1103/PhysRevA.93.063855

    Article  ADS  Google Scholar 

  14. A. Ghirri, C. Bonizzoni, D. Gerace, S. Sanna, A. Cassinese, M. Affronte, \(\text{ YBa}_{2}\text{ Cu}_{3}\text{ O}_{7}\) microwave resonators for strong collective coupling with spin ensembles. Appl. Phys. Lett. 106(18), 184101 (2015). https://doi.org/10.1063/1.4920930

    Article  ADS  Google Scholar 

  15. M. Mergenthaler, J. Liu, J.J. Le Roy, N. Ares, A.L. Thompson, L. Bogani, F. Luis, S.J. Blundell, T. Lancaster, A. Ardavan, G.A.D. Briggs, P.J. Leek, E.A. Laird, Strong coupling of microwave photons to antiferromagnetic fluctuations in an organic magnet. Phys. Rev. Lett. 119, 147701 (2017). https://doi.org/10.1103/PhysRevLett.119.147701

    Article  ADS  Google Scholar 

  16. S. Lenz, D. Kónig, D. Hunger, J. van Slageren, Room-temperature quantum memories based on molecular electron spin ensembles. Adv. Materi. https://doi.org/10.1002/adma.202101673

  17. A. Blank, Y. Twig, Y. Ishay, Recent trends in high spin sensitivity magnetic resonance. J. Magn. Reson. 280, 20–29 (2017). https://doi.org/10.1016/j.jmr.2017.02.019. (Special Issue on Methodological advances in EPR spectroscopy and imaging)

    Article  ADS  Google Scholar 

  18. R. Narkowicz, D. Suter, I. Niemeyer, Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance. Rev. Sci. Instrum. 79(8), 084702 (2008). https://doi.org/10.1063/1.2964926

    Article  ADS  Google Scholar 

  19. R. Narkowicz, D. Suter, R. Stonies, Planar microresonators for epr experiments. J. Magn. Reson. 175(2), 275–284 (2005). https://doi.org/10.1016/j.jmr.2005.04.014

    Article  ADS  Google Scholar 

  20. Y. Twig, E. Suhovoy, A. Blank, Sensitive surface loop-gap microresonators for electron spin resonance. Rev. Sci. Instrum. 81, 104703 (2010). https://doi.org/10.1063/1.3488365

    Article  ADS  Google Scholar 

  21. Y. Twig, E. Dikarov, A. Blank, Ultra miniature resonators for electron spin resonance: sensitivity analysis, design and construction methods, and potential applications. Mol. Phys. 111(18–19), 2674–2682 (2013). https://doi.org/10.1080/00268976.2012.762463

    Article  ADS  Google Scholar 

  22. A.V. Matheoud, G. Gualco, M. Jeong, I. Zivkovic, J. Brugger, H.M. Rønnow, J. Anders, G. Boero, Single-chip electron spin resonance detectors operating at 50 ghz, 92 ghz, and 146 ghz. J. Magn. Reson. 278, 113–121 (2017). https://doi.org/10.1016/j.jmr.2017.03.013

    Article  ADS  Google Scholar 

  23. G. Boero, G. Gualco, R. Lisowski, J. Anders, D. Suter, J. Brugger, Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins. J. Magn. Reson. 231, 133–140 (2013). https://doi.org/10.1016/j.jmr.2013.04.004

    Article  ADS  Google Scholar 

  24. Y. Artzi, Y. Yishay, M. Fanciulli, M. Jbara, A. Blank, Superconducting micro-resonators for electron spin resonance—the good, the bad, and the future. J. Magn. Reson. 334, 107102 (2022). https://doi.org/10.1016/j.jmr.2021.107102

    Article  Google Scholar 

  25. N. Dayan, Y. Ishay, Y. Artzi, D. Cristea, E. Reijerse, P. Kuppusamy, A. Blank, Advanced surface resonators for electron spin resonance of single microcrystals. Rev. Sci. Instrum. 89(12), 124707 (2018). https://doi.org/10.1063/1.5063367

    Article  ADS  Google Scholar 

  26. N. Abhyankar, A. Agrawal, P. Shrestha, R. Maier, R.D. McMichael, J. Campbell, V. Szalai, Scalable microresonators for room-temperature detection of electron spin resonance from dilute, sub-nanoliter volume solids. Sci. Adv. 6(44) (2020). https://doi.org/10.1126/sciadv.abb0620. https://advances.sciencemag.org/content/6/44/eabb0620.full.pdf

  27. M.D. Jenkins, U. Naether, M. Ciria, J. Sesé, J. Atkinson, C. Sánchez-Azqueta, E.D. Barco, J. Majer, D. Zueco, F. Luis, Nanoscale constrictions in superconducting coplanar waveguide resonators. Appl. Phys. Lett. 105, 162601 (2014). https://doi.org/10.1063/1.4899141

    Article  ADS  Google Scholar 

  28. S.Z. Kiss, A.M. Rostas, L. Heidinger, N. Spengler, M.V. Meissner, N. MacKinnon, E. Schleicher, S. Weber, J.G. Korvink, A microwave resonator integrated on a polymer microfluidic chip. J. Magn. Reson. 270, 169–175 (2016). https://doi.org/10.1016/j.jmr.2016.07.008

    Article  ADS  Google Scholar 

  29. C. Eichler, A.J. Sigillito, S.A. Lyon, J.R. Petta, Electron spin resonance at the level of \(1{0}^{4}\) spins using low impedance superconducting resonators. Phys. Rev. Lett. 118, 037701 (2017). https://doi.org/10.1103/PhysRevLett.118.037701

    Article  ADS  Google Scholar 

  30. N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D.P. DiVincenzo, L. DiCarlo, L.M.K. Vandersypen, High-kinetic-inductance superconducting nanowire resonators for circuit qed in a magnetic field. Phys. Rev. Appl. 5, 044004 (2016). https://doi.org/10.1103/PhysRevApplied.5.044004

    Article  ADS  Google Scholar 

  31. N. Maleeva, L. Grünhaupt, T. Klein, F. Levy-Bertrand, O. Dupre, M. Calvo, F. Valenti, P. Winkel, F. Friedrich, W. Wernsdorfer, A.V. Ustinov, H. Rotzinger, A. Monfardini, M.V. Fistul, I.M. Pop, Circuit quantum electrodynamics of granular aluminum resonators. Nat. Commun. 9(1), 3889 (2018)

    Article  ADS  Google Scholar 

  32. P. Winkel, K. Borisov, L. Grünhaupt, D. Rieger, M. Spiecker, F. Valenti, A.V. Ustinov, W. Wernsdorfer, I.M. Pop, Implementation of a transmon qubit using superconducting granular aluminum. Phys. Rev. X 10, 031032 (2020). https://doi.org/10.1103/PhysRevX.10.031032

    Article  Google Scholar 

  33. A.J.P. Bienfait, Y. Kubo, M. Stern, X.C.L.D.W. Zhou, T.W.T.L. Schenkel, D. Vion, D. Esteve, B. Julsgaard, K.L.M.J. Mølmer, P. Bertet, Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nano 11(3), 253–257 (2016)

    Article  Google Scholar 

  34. V. Ranjan, S. Probst, B. Albanese, T. Schenkel, D. Vion, D. Esteve, J.J.L. Morton, P. Bertet, Electron spin resonance spectroscopy with femtoliter detection volume. Appl. Phys. Lett. 116(18), 184002 (2020). https://doi.org/10.1063/5.0004322

    Article  ADS  Google Scholar 

  35. S. Probst, A. Bienfait, P. Campagne-Ibarcq, J.J. Pla, B. Albanese, J.F. Da Silva Barbosa, T. Schenkel, D. Vion, D. Esteve, K. Molmer, J.J.L. Morton, R. Heeres, P. Bertet, Inductive-detection electron-spin resonance spectroscopy with 65 spins/ hz sensitivity. Appl. Phys. Lett. 111(20), 202604 (2017). https://doi.org/10.1063/1.5002540

    Article  ADS  Google Scholar 

  36. C. Bonizzoni, F. Troiani, A. Ghirri, M. Affronte, Microwave dual-mode resonators for coherent spin-photon coupling. J. Appl. Phys. 124(19), 194501 (2018). https://doi.org/10.1063/1.5050869

    Article  ADS  Google Scholar 

  37. C. Bonizzoni, A. Ghirri, S. Nakazawa, S. Nishida, K. Sato, T. Takui, M. Affronte, Transmission spectroscopy of molecular spin ensembles in the dispersive regime. Adv. Quant. Tech. 4(9), 2100039 (2021). https://doi.org/10.1002/qute.202100039

    Article  Google Scholar 

  38. C. Bonizzoni, A. Ghirri, F. Santanni, M. Atzori, L. Sorace, R. Sessoli, M. Affronte, Storage and retrieval of microwave pulses with molecular spin ensembles. NPJ Quant. Inform. 6(1), 68 (2020)

    Article  ADS  Google Scholar 

  39. C. Bonizzoni, A. Ghirri, K. Bader, J. van Slageren, M. Perfetti, L. Sorace, Y. Lan, O. Fuhr, M. Ruben, M. Affronte, Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits. Dalton Trans. 45, 16596–16603 (2016). https://doi.org/10.1039/C6DT01953F

    Article  Google Scholar 

  40. C. Caspers, P.F. da Silva, M. Soundararajan, M.A. Haider, J.-P. Ansermet, Field and frequency modulated sub-thz electron spin resonance spectrometer. APL Photon. 1(2), 026101 (2016). https://doi.org/10.1063/1.4945450

    Article  ADS  Google Scholar 

  41. S. Mitsudo, K. Kono, K. Dono, K. Hayashi, Y. Ishikawa, Y. Fujii, Ft-esr measurements on bdpa by pulsed esr using a gyrotron as high-power millimeter wave source. In: 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–1 (2019). https://doi.org/10.1109/IRMMW-THz.2019.8874493

  42. M. Jenkins, T. Hümmer, M.J. Martínez-Pérez, J. García-Ripoll, D. Zueco, F. Luis, Coupling single-molecule magnets to quantum circuits. N. J. Phys. 15, 095007 (2013)

    Article  Google Scholar 

  43. J. Anders, A. Angerhofer, G. Boero, K-band single-chip electron spin resonance detector. J. Magn. Reson. 217, 19–26 (2012). https://doi.org/10.1016/j.jmr.2012.02.003

    Article  ADS  Google Scholar 

  44. T. Yalcin, G. Boero, Single-chip detector for electron spin resonance spectroscopy. Rev. Sci. Instrum. 79(9), 094105 (2008). https://doi.org/10.1063/1.2969657

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dorsa Komijani (previously at National High Magnetic Field Laboratory, Tallahassee, Florida, USA) for additional discussion on BDPA sample. This work was funded by the H2020-FETOPEN “Supergalax” project (Grant Agreement No. 863313) supported by the European Community and supported by NATO Science for Peace and Security Programme (NATO SPS Project No. G5859). MM acknowledges TUBITAK-BIDEB for the 2219 scholarship program. The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1644779 and the State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

Data on CW transmission spectroscopy were collected by CB and MM. Data on PW transmission spectroscopy were collected by CB. All data analysis has been carried out by CB. MM carried out the electromagnetic simulations of the resonators. IARs were fabricated by AG and MM. The BDPA sample was prepared by JvT. The paper was written by CB with inputs from all authors. MA, BR, AG, MM, CB conceived the experiment. The manuscript has been revised by all authors before submission.

Corresponding author

Correspondence to Claudio Bonizzoni.

Ethics declarations

Conflict of Interest

The authors declare no competing or financial interests.

Editorial Policies for:

Springer journals and proceedings: https://www.springer.com/gp/editorial-policies

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 4794 kb)

Supplementary file1 (pdf 258 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonizzoni, C., Maksutoglu, M., Ghirri, A. et al. Coupling Sub-nanoliter BDPA Organic Radical Spin Ensembles with YBCO Inverse Anapole Resonators. Appl Magn Reson 54, 143–164 (2023). https://doi.org/10.1007/s00723-022-01505-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01505-8

Navigation