Abstract
We report a true wideband Fourier transform (FT) EPR detection capability at the uniquely high frequency of 94 GHz (W-band). It is based on the quasi-optical HiPER spectrometer developed at the University of St. Andrews, into which we have integrated an arbitrary waveform generator (AWG) that is used to modulate the output from a solid-state multiplier chain prior to amplification, generating up to 1 kW microwave power with 1 GHz instantaneous bandwidth. Benchmark experiments are presented for a standard TEMPOL radical, which comprises a 500 MHz broad EPR spectrum at W-band. Using a single adiabatic chirp pulse, efficient inversion of this spectrum is demonstrated, enabling frequency-dependent studies of the longitudinal magnetization recovery in the time-domain, again via chirp pulse echo detection. From these measurements, an anisotropy in the spin–lattice relaxation time, T1, can be determined with ease for TEMPOL. In addition, we implement the FT detection scheme for multi-dimensional (electron–electron double resonance, or ELDOR) experiments, demonstrating the full capabilities of the HiPER spectrometer. As an example, we present a chirp pulse, FT-detected version of the ELDOR NMR technique for the TEMPOL radical.







Similar content being viewed by others
References
S. Stoll, in Electron Paramagnetic Resonance, vol. 22, ed. by B.C. Gilbert, D.M. Murphy, V. Chechik (The Royal Society of Chemistry, Cambridge, UK, 2011), pp.107–154
C. Duboc-Toia, A.K. Hassan, E. Mulliez, S. Ollagnier-de Choudens, M. Fontecave, C. Leutwein, J. Heider, J. Am. Chem. Soc. 125, 38 (2003). https://doi.org/10.1021/ja026690j
A. Savitsky, A.A. Dubinskii, H. Zimmermann, W. Lubitz, K. Möbius, J. Phys. Chem. B 115, 11950 (2011). https://doi.org/10.1021/jp206841v
A. Savitsky, K. Möbius, Photosynth. Res. 102, 311 (2009). https://doi.org/10.1007/s11120-009-9432-4
L. Motion, J.E. Lovett, S. Bell, S.L. Cassidy, P.A.S. Cruickshank, D.R. Bolton, R.I. Hunter, H. El Mkami, S. Van Doorslaer, G.M. Smith, J. Phys. Chem. Lett. 7, 1411 (2016). https://doi.org/10.1021/acs.jpclett.6b00456
I. Kaminker, M. Florent, B. Epel, D. Goldfarb, J. Magn. Reson. 208, 95 (2011). https://doi.org/10.1016/j.jmr.2010.10.010
P. Goldfarb, Chem. Chem. Phys. 8, 2325 (2006). https://doi.org/10.1039/B601513C
D. Goldfarb, eMagRes 6, 101 (2017). https://doi.org/10.1002/9780470034590.emrstm1516
R.R. Ernst, W.A. Anderson, Rev. Sci. Instrum. 37, 93 (1966). https://doi.org/10.1063/1.1719961
A.J. Vega, eMagRes. (2010). https://doi.org/10.1002/9780470034590.emrstm0431.pub2
R.W. Schurko, eMagRes (2011). https://doi.org/10.1002/9780470034590.emrstm1199
I. Hung, A.R. Altenhof, R.W. Schurko, D.L. Bryce, O.H. Han, Z. Gan, Magn. Reson. Chem. 59, 951 (2021). https://doi.org/10.1002/mrc.5128
R. Bhattacharyya, L. Frydman, J. Chem. Phys. 127, 194503 (2007). https://doi.org/10.1063/1.2793783
G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, B.H. Pate, J. Mol. Spectrosc. 238, 200 (2006). https://doi.org/10.1016/j.jms.2006.05.003
C.B. Park, R.W. Field, J. Chem. Phys. 144, 200901 (2016). https://doi.org/10.1063/1.4952762
M. Tseitlin, R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 213, 119 (2011). https://doi.org/10.1016/j.jmr.2011.09.024
T. Kaufmann, T.J. Keller, J.M. Franck, R.P. Barnes, S.J. Glaser, J.M. Martinis, S. Han, J. Magn. Reson. 235, 95 (2013). https://doi.org/10.1016/j.jmr.2013.07.015
P.E. Spindler, S.J. Glaser, T.E. Skinner, T.F. Prisner, Angew. Chemie - Int. Ed. 52, 3425 (2013). https://doi.org/10.1002/anie.201207777
P.E. Spindler, I. Waclawska, B. Endeward, J. Plackmeyer, C. Ziegler, T.F. Prisner, J. Phys. Chem. Lett. 6, 4331 (2015). https://doi.org/10.1021/acs.jpclett.5b01933
T. Bahrenberg, Y. Rosenski, R. Carmieli, K. Zibzener, M. Qi, V. Frydman, A. Godt, D. Goldfarb, A. Feintuch, J. Magn. Reson. 283, 1 (2017). https://doi.org/10.1016/j.jmr.2017.08.003
D. Breitgoff, K. Keller, M. Qi, D. Klose, M. Yulikov, A. Godt, G. Jeschke, J. Magn. Reson. 308, 106560 (2019). https://doi.org/10.1016/j.jmr.2019.07.047
P.T. Judge, E.L. Sesti, N. Alaniva, E.P. Saliba, L.E. Price, C. Gao, T. Halbritter, S.T. Sigurdsson, G.B. Kyei, A.B. Barnes, J. Magn. Reson. 313, 106702 (2020). https://doi.org/10.1016/j.jmr.2020.106702
I. Kaminker, R. Barnes, S. Han, J. Magn. Reson. 279, 81 (2017). https://doi.org/10.1016/j.jmr.2017.04.016
N. Wili, G. Jeschke, J. Magn. Reson. 289, 26 (2018). https://doi.org/10.1016/j.jmr.2018.02.001
P.A.S. Cruickshank, D.R. Bolton, D.A. Robertson, R.I. Hunter, R.J. Wylde, G.M. Smith, Rev. Sci. Instrum. 80, 103102 (2009). https://doi.org/10.1063/1.3239402
T.V. Can, J.E. McKay, R.T. Weber, T. Dubroca, J. van Tol, S. Hill, R.G. Griffin, J. Phys. Chem. Lett. 9, 3187 (2018). https://doi.org/10.1021/acs.jpclett.8b01002
R.A. De Graaf, eMagRes 5, 1003 (2016). https://doi.org/10.1002/9780470034590.emrstm1443
L.A. O’Dell, Solid State Nucl. Magn. Reson. 55–56, 28 (2013). https://doi.org/10.1016/j.ssnmr.2013.10.003
P.E. Spindler, P. Schöps, W. Kallies, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 280, 30 (2017). https://doi.org/10.1016/j.jmr.2017.02.023
Ē Kupče, R. Freeman, J. Magn. Reson. Ser. A 115, 273 (1995). https://doi.org/10.1006/jmra.1995.1179
J. Baum, R. Tycko, A. Pines, Phys. Rev. A 32, 3435 (1985). https://doi.org/10.1103/PhysRevA.32.3435
A. Doll, G. Jeschke, J. Magn. Reson. 246, 18 (2014). https://doi.org/10.1016/j.jmr.2014.06.016
C.E. Shannon, Proc. IRE 37, 10 (1949). https://doi.org/10.1109/JRPROC.1949.232969
L. Hahn, Phys. Rev. 80, 580 (1950). https://doi.org/10.1103/PhysRev.80.580
M. Böhlen, I. Burghardt, M. Rey, G. Bodenhausen, J. Magn. Reson. 90, 183 (1990). https://doi.org/10.1016/0022-2364(90)90377-L
M. Böhlen, M. Rey, G. Bodenhausen, J. Magn. Reson. 84, 191 (1989). https://doi.org/10.1016/0022-2364(89)90018-8
E.M.M. Weber, H. Vezin, J.G. Kempf, G. Bodenhausen, D. Abergél, D. Kurzbach, Phys. Chem. Chem. Phys. 19, 16087 (2017). https://doi.org/10.1039/C7CP03242K
M. Ramirez Cohen, A. Feintuch, D. Goldfarb, S. Vega, Magn. Reson. 1, 45 (2020). https://doi.org/10.5194/mr-1-45-2020
X. Wang, J.E. McKay, B. Lama, J. van Tol, T. Li, K. Kirkpatrick, Z. Gan, S. Hill, J.R. Long, H.C. Dorn, Chem. Commun. 54, 2425 (2018). https://doi.org/10.1039/C7CC09765D
S.M. Greer, J. McKay, K.M. Gramigna, C.M. Thomas, S.A. Stoian, S. Hill, Inorg. Chem. 57, 5870 (2018). https://doi.org/10.1021/acs.inorgchem.8b00280
A.I. Smirnov, T.I. Smirnov, P.D. Morse, Biophys. J. 68, 2350 (1995). https://doi.org/10.1016/S0006-3495(95)80417-0
H. Sato, V. Kathirvelu, G. Spagnol, S. Rajca, A. Rajca, S.S. Eaton, G.R. Eaton, J. Phys. Chem. B 112, 2818 (2008). https://doi.org/10.1021/jp073600u
P. Kazmierczak, R. Mirzoyan, R.G. Hadt, J. Am. Chem. Soc. 143(42), 17305 (2021). https://doi.org/10.1021/jacs.1c04605
G.C. Kragskow, C.D. Buch, J. Nehrkorn, M. Ozerov, S. Piligkos, S. Hill, N.F. Chilton, Nat. Commun. 13, 825 (2022). https://doi.org/10.1038/s41467-022-28352-2
R. Biller, V.M. Meyer, H. Elajaili, G.M. Rosen, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 225, 52 (2012). https://doi.org/10.1016/j.jmr.2012.10.002
C. Chen, J.F. Hu, S. Stanton, H.-P. Hill, X.-G. Cheng, J. Phys. Chem. Lett. 11, 2074 (2020). https://doi.org/10.1021/acs.jpclett.0c00193
E.R. Canarie, S.M. Jahn, S. Stoll, J. Phys. Chem. Lett. 11, 3396 (2020). https://doi.org/10.1021/acs.jpclett.0c00768
J. Chen, S. Hoffman, K. Kundu, J. Marbey, D. Komijani, Y. Duan, A. Gaita-Ariño, X.-G. Zhang, S. Hill, H.-P. Cheng, arXiv:2106.05185 [quant-ph]. https://arxiv.org/abs/2106.05185
A. Collauto, S. Mishra, A. Litvinov, H.S. Mchaourab, D. Goldfarb, Structure 25, 1264 (2017). https://doi.org/10.1016/j.str.2017.06.014
A. Giannoulis, A. Feintuch, Y. Barak, H. Mazal, S. Albeck, T. Unger, F. Yang, X.C. Su, D. Goldfarb, Proc. Natl. Acad. Sci. USA 117, 395 (2020). https://doi.org/10.1073/pnas.1916030116
E. C. Kisgeropoulos, Y. J. Gan, S. M. Greer, J. M. Hazel, H. S. Shafaat, J. Am. Chem. Soc. 144,11991 (2022). https://doi.org/10.1021/jacs.1c13738
Y. Hovav, I. Kaminker, D. Shimon, A. Feintuch, D. Goldfarb, S. Vega, Phys. Chem. Chem. Phys. 17, 226 (2015). https://doi.org/10.1039/C4CP03825H
S. van Doorslaer, eMagRes 6, 51 (2017). https://doi.org/10.1002/9780470034590.emrstm1517
A. Doll, M. Qi, N. Wili, S. Pribitzer, A. Godt, G. Jeschke, J. Magn. Reson. 259, 153 (2015). https://doi.org/10.1016/j.jmr.2015.08.010
D.L. Goodwin, W.K. Myers, C.R. Timmel, I. Kuprov, J. Magn. Reson. 297, 9 (2018). https://doi.org/10.1016/j.jmr.2018.09.009
P.E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T.E. Skinner, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 218, 49 (2012). https://doi.org/10.1016/j.jmr.2012.02.013
Acknowledgements
We are indebted to Rob Hunter, Paul Cruickshank, Graham Smith (St. Andrews University) for very fruitful advice and discussions, and Boris Epel (University of Chicago) for development of the software interface associated with the AWG-driven HiPER spectrometer.
Funding
This work was supported by the US Department of Energy (under DE-SC0020260 to SH). Work performed at the NHMFL is supported by the US National Science Foundation (DMR-1644779) and by the State of Florida.
Author information
Authors and Affiliations
Contributions
SH, JM, and KK conceived the research. MVHS, JM, JEM, and KK carried out the AWG integration on the HiPER spectrometer. JEM designed and integrated the multiplier chain. MVHS and KK prepared the sample. SH, JM, MVHS, and KK designed the experiments, while MVHS and KK performed the measurements. MVHS and KK analyzed the EPR results. All authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing financial interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Subramanya, M.V.H., Marbey, J., Kundu, K. et al. Broadband Fourier-Transform-Detected EPR at W-Band. Appl Magn Reson 54, 165–181 (2023). https://doi.org/10.1007/s00723-022-01499-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00723-022-01499-3


