Skip to main content
Log in

Broadband Fourier-Transform-Detected EPR at W-Band

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We report a true wideband Fourier transform (FT) EPR detection capability at the uniquely high frequency of 94 GHz (W-band). It is based on the quasi-optical HiPER spectrometer developed at the University of St. Andrews, into which we have integrated an arbitrary waveform generator (AWG) that is used to modulate the output from a solid-state multiplier chain prior to amplification, generating up to 1 kW microwave power with 1 GHz instantaneous bandwidth. Benchmark experiments are presented for a standard TEMPOL radical, which comprises a 500 MHz broad EPR spectrum at W-band. Using a single adiabatic chirp pulse, efficient inversion of this spectrum is demonstrated, enabling frequency-dependent studies of the longitudinal magnetization recovery in the time-domain, again via chirp pulse echo detection. From these measurements, an anisotropy in the spin–lattice relaxation time, T1, can be determined with ease for TEMPOL. In addition, we implement the FT detection scheme for multi-dimensional (electron–electron double resonance, or ELDOR) experiments, demonstrating the full capabilities of the HiPER spectrometer. As an example, we present a chirp pulse, FT-detected version of the ELDOR NMR technique for the TEMPOL radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Stoll, in Electron Paramagnetic Resonance, vol. 22, ed. by B.C. Gilbert, D.M. Murphy, V. Chechik (The Royal Society of Chemistry, Cambridge, UK, 2011), pp.107–154

    Google Scholar 

  2. C. Duboc-Toia, A.K. Hassan, E. Mulliez, S. Ollagnier-de Choudens, M. Fontecave, C. Leutwein, J. Heider, J. Am. Chem. Soc. 125, 38 (2003). https://doi.org/10.1021/ja026690j

    Article  Google Scholar 

  3. A. Savitsky, A.A. Dubinskii, H. Zimmermann, W. Lubitz, K. Möbius, J. Phys. Chem. B 115, 11950 (2011). https://doi.org/10.1021/jp206841v

    Article  Google Scholar 

  4. A. Savitsky, K. Möbius, Photosynth. Res. 102, 311 (2009). https://doi.org/10.1007/s11120-009-9432-4

    Article  Google Scholar 

  5. L. Motion, J.E. Lovett, S. Bell, S.L. Cassidy, P.A.S. Cruickshank, D.R. Bolton, R.I. Hunter, H. El Mkami, S. Van Doorslaer, G.M. Smith, J. Phys. Chem. Lett. 7, 1411 (2016). https://doi.org/10.1021/acs.jpclett.6b00456

    Article  Google Scholar 

  6. I. Kaminker, M. Florent, B. Epel, D. Goldfarb, J. Magn. Reson. 208, 95 (2011). https://doi.org/10.1016/j.jmr.2010.10.010

    Article  ADS  Google Scholar 

  7. P. Goldfarb, Chem. Chem. Phys. 8, 2325 (2006). https://doi.org/10.1039/B601513C

    Article  Google Scholar 

  8. D. Goldfarb, eMagRes 6, 101 (2017). https://doi.org/10.1002/9780470034590.emrstm1516

    Article  Google Scholar 

  9. R.R. Ernst, W.A. Anderson, Rev. Sci. Instrum. 37, 93 (1966). https://doi.org/10.1063/1.1719961

    Article  ADS  Google Scholar 

  10. A.J. Vega, eMagRes. (2010). https://doi.org/10.1002/9780470034590.emrstm0431.pub2

    Article  Google Scholar 

  11. R.W. Schurko, eMagRes (2011). https://doi.org/10.1002/9780470034590.emrstm1199

    Article  Google Scholar 

  12. I. Hung, A.R. Altenhof, R.W. Schurko, D.L. Bryce, O.H. Han, Z. Gan, Magn. Reson. Chem. 59, 951 (2021). https://doi.org/10.1002/mrc.5128

    Article  Google Scholar 

  13. R. Bhattacharyya, L. Frydman, J. Chem. Phys. 127, 194503 (2007). https://doi.org/10.1063/1.2793783

    Article  ADS  Google Scholar 

  14. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, B.H. Pate, J. Mol. Spectrosc. 238, 200 (2006). https://doi.org/10.1016/j.jms.2006.05.003

    Article  ADS  Google Scholar 

  15. C.B. Park, R.W. Field, J. Chem. Phys. 144, 200901 (2016). https://doi.org/10.1063/1.4952762

    Article  ADS  Google Scholar 

  16. M. Tseitlin, R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 213, 119 (2011). https://doi.org/10.1016/j.jmr.2011.09.024

    Article  ADS  Google Scholar 

  17. T. Kaufmann, T.J. Keller, J.M. Franck, R.P. Barnes, S.J. Glaser, J.M. Martinis, S. Han, J. Magn. Reson. 235, 95 (2013). https://doi.org/10.1016/j.jmr.2013.07.015

    Article  ADS  Google Scholar 

  18. P.E. Spindler, S.J. Glaser, T.E. Skinner, T.F. Prisner, Angew. Chemie - Int. Ed. 52, 3425 (2013). https://doi.org/10.1002/anie.201207777

    Article  Google Scholar 

  19. P.E. Spindler, I. Waclawska, B. Endeward, J. Plackmeyer, C. Ziegler, T.F. Prisner, J. Phys. Chem. Lett. 6, 4331 (2015). https://doi.org/10.1021/acs.jpclett.5b01933

    Article  Google Scholar 

  20. T. Bahrenberg, Y. Rosenski, R. Carmieli, K. Zibzener, M. Qi, V. Frydman, A. Godt, D. Goldfarb, A. Feintuch, J. Magn. Reson. 283, 1 (2017). https://doi.org/10.1016/j.jmr.2017.08.003

    Article  ADS  Google Scholar 

  21. D. Breitgoff, K. Keller, M. Qi, D. Klose, M. Yulikov, A. Godt, G. Jeschke, J. Magn. Reson. 308, 106560 (2019). https://doi.org/10.1016/j.jmr.2019.07.047

    Article  Google Scholar 

  22. P.T. Judge, E.L. Sesti, N. Alaniva, E.P. Saliba, L.E. Price, C. Gao, T. Halbritter, S.T. Sigurdsson, G.B. Kyei, A.B. Barnes, J. Magn. Reson. 313, 106702 (2020). https://doi.org/10.1016/j.jmr.2020.106702

    Article  Google Scholar 

  23. I. Kaminker, R. Barnes, S. Han, J. Magn. Reson. 279, 81 (2017). https://doi.org/10.1016/j.jmr.2017.04.016

    Article  ADS  Google Scholar 

  24. N. Wili, G. Jeschke, J. Magn. Reson. 289, 26 (2018). https://doi.org/10.1016/j.jmr.2018.02.001

    Article  ADS  Google Scholar 

  25. P.A.S. Cruickshank, D.R. Bolton, D.A. Robertson, R.I. Hunter, R.J. Wylde, G.M. Smith, Rev. Sci. Instrum. 80, 103102 (2009). https://doi.org/10.1063/1.3239402

    Article  ADS  Google Scholar 

  26. T.V. Can, J.E. McKay, R.T. Weber, T. Dubroca, J. van Tol, S. Hill, R.G. Griffin, J. Phys. Chem. Lett. 9, 3187 (2018). https://doi.org/10.1021/acs.jpclett.8b01002

    Article  Google Scholar 

  27. R.A. De Graaf, eMagRes 5, 1003 (2016). https://doi.org/10.1002/9780470034590.emrstm1443

    Article  Google Scholar 

  28. L.A. O’Dell, Solid State Nucl. Magn. Reson. 55–56, 28 (2013). https://doi.org/10.1016/j.ssnmr.2013.10.003

    Article  Google Scholar 

  29. P.E. Spindler, P. Schöps, W. Kallies, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 280, 30 (2017). https://doi.org/10.1016/j.jmr.2017.02.023

    Article  ADS  Google Scholar 

  30. Ē Kupče, R. Freeman, J. Magn. Reson. Ser. A 115, 273 (1995). https://doi.org/10.1006/jmra.1995.1179

    Article  ADS  Google Scholar 

  31. J. Baum, R. Tycko, A. Pines, Phys. Rev. A 32, 3435 (1985). https://doi.org/10.1103/PhysRevA.32.3435

    Article  ADS  Google Scholar 

  32. A. Doll, G. Jeschke, J. Magn. Reson. 246, 18 (2014). https://doi.org/10.1016/j.jmr.2014.06.016

    Article  ADS  Google Scholar 

  33. C.E. Shannon, Proc. IRE 37, 10 (1949). https://doi.org/10.1109/JRPROC.1949.232969

    Article  Google Scholar 

  34. L. Hahn, Phys. Rev. 80, 580 (1950). https://doi.org/10.1103/PhysRev.80.580

    Article  ADS  Google Scholar 

  35. M. Böhlen, I. Burghardt, M. Rey, G. Bodenhausen, J. Magn. Reson. 90, 183 (1990). https://doi.org/10.1016/0022-2364(90)90377-L

    Article  ADS  Google Scholar 

  36. M. Böhlen, M. Rey, G. Bodenhausen, J. Magn. Reson. 84, 191 (1989). https://doi.org/10.1016/0022-2364(89)90018-8

    Article  ADS  Google Scholar 

  37. E.M.M. Weber, H. Vezin, J.G. Kempf, G. Bodenhausen, D. Abergél, D. Kurzbach, Phys. Chem. Chem. Phys. 19, 16087 (2017). https://doi.org/10.1039/C7CP03242K

    Article  Google Scholar 

  38. M. Ramirez Cohen, A. Feintuch, D. Goldfarb, S. Vega, Magn. Reson. 1, 45 (2020). https://doi.org/10.5194/mr-1-45-2020

    Article  Google Scholar 

  39. X. Wang, J.E. McKay, B. Lama, J. van Tol, T. Li, K. Kirkpatrick, Z. Gan, S. Hill, J.R. Long, H.C. Dorn, Chem. Commun. 54, 2425 (2018). https://doi.org/10.1039/C7CC09765D

    Article  Google Scholar 

  40. S.M. Greer, J. McKay, K.M. Gramigna, C.M. Thomas, S.A. Stoian, S. Hill, Inorg. Chem. 57, 5870 (2018). https://doi.org/10.1021/acs.inorgchem.8b00280

    Article  Google Scholar 

  41. A.I. Smirnov, T.I. Smirnov, P.D. Morse, Biophys. J. 68, 2350 (1995). https://doi.org/10.1016/S0006-3495(95)80417-0

    Article  ADS  Google Scholar 

  42. H. Sato, V. Kathirvelu, G. Spagnol, S. Rajca, A. Rajca, S.S. Eaton, G.R. Eaton, J. Phys. Chem. B 112, 2818 (2008). https://doi.org/10.1021/jp073600u

    Article  Google Scholar 

  43. P. Kazmierczak, R. Mirzoyan, R.G. Hadt, J. Am. Chem. Soc. 143(42), 17305 (2021). https://doi.org/10.1021/jacs.1c04605

    Article  Google Scholar 

  44. G.C. Kragskow, C.D. Buch, J. Nehrkorn, M. Ozerov, S. Piligkos, S. Hill, N.F. Chilton, Nat. Commun. 13, 825 (2022). https://doi.org/10.1038/s41467-022-28352-2

    Article  ADS  Google Scholar 

  45. R. Biller, V.M. Meyer, H. Elajaili, G.M. Rosen, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 225, 52 (2012). https://doi.org/10.1016/j.jmr.2012.10.002

    Article  ADS  Google Scholar 

  46. C. Chen, J.F. Hu, S. Stanton, H.-P. Hill, X.-G. Cheng, J. Phys. Chem. Lett. 11, 2074 (2020). https://doi.org/10.1021/acs.jpclett.0c00193

    Article  Google Scholar 

  47. E.R. Canarie, S.M. Jahn, S. Stoll, J. Phys. Chem. Lett. 11, 3396 (2020). https://doi.org/10.1021/acs.jpclett.0c00768

    Article  Google Scholar 

  48. J. Chen, S. Hoffman, K. Kundu, J. Marbey, D. Komijani, Y. Duan, A. Gaita-Ariño, X.-G. Zhang, S. Hill, H.-P. Cheng, arXiv:2106.05185 [quant-ph]. https://arxiv.org/abs/2106.05185

  49. A. Collauto, S. Mishra, A. Litvinov, H.S. Mchaourab, D. Goldfarb, Structure 25, 1264 (2017). https://doi.org/10.1016/j.str.2017.06.014

    Article  Google Scholar 

  50. A. Giannoulis, A. Feintuch, Y. Barak, H. Mazal, S. Albeck, T. Unger, F. Yang, X.C. Su, D. Goldfarb, Proc. Natl. Acad. Sci. USA 117, 395 (2020). https://doi.org/10.1073/pnas.1916030116

    Article  ADS  Google Scholar 

  51. E. C. Kisgeropoulos, Y. J. Gan, S. M. Greer, J. M. Hazel, H. S. Shafaat, J. Am. Chem. Soc. 144,11991 (2022). https://doi.org/10.1021/jacs.1c13738

  52. Y. Hovav, I. Kaminker, D. Shimon, A. Feintuch, D. Goldfarb, S. Vega, Phys. Chem. Chem. Phys. 17, 226 (2015). https://doi.org/10.1039/C4CP03825H

    Article  Google Scholar 

  53. S. van Doorslaer, eMagRes 6, 51 (2017). https://doi.org/10.1002/9780470034590.emrstm1517

    Article  Google Scholar 

  54. A. Doll, M. Qi, N. Wili, S. Pribitzer, A. Godt, G. Jeschke, J. Magn. Reson. 259, 153 (2015). https://doi.org/10.1016/j.jmr.2015.08.010

    Article  ADS  Google Scholar 

  55. D.L. Goodwin, W.K. Myers, C.R. Timmel, I. Kuprov, J. Magn. Reson. 297, 9 (2018). https://doi.org/10.1016/j.jmr.2018.09.009

    Article  ADS  Google Scholar 

  56. P.E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T.E. Skinner, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 218, 49 (2012). https://doi.org/10.1016/j.jmr.2012.02.013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to Rob Hunter, Paul Cruickshank, Graham Smith (St. Andrews University) for very fruitful advice and discussions, and Boris Epel (University of Chicago) for development of the software interface associated with the AWG-driven HiPER spectrometer.

Funding

This work was supported by the US Department of Energy (under DE-SC0020260 to SH). Work performed at the NHMFL is supported by the US National Science Foundation (DMR-1644779) and by the State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

SH, JM, and KK conceived the research. MVHS, JM, JEM, and KK carried out the AWG integration on the HiPER spectrometer. JEM designed and integrated the multiplier chain. MVHS and KK prepared the sample. SH, JM, MVHS, and KK designed the experiments, while MVHS and KK performed the measurements. MVHS and KK analyzed the EPR results. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Stephen Hill.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanya, M.V.H., Marbey, J., Kundu, K. et al. Broadband Fourier-Transform-Detected EPR at W-Band. Appl Magn Reson 54, 165–181 (2023). https://doi.org/10.1007/s00723-022-01499-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01499-3