Skip to main content
Log in

Triplet Born Radical Pairs and the Low Field Effect

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The importance of photochemical reactions proceeding through the formation of spin-correlated radical pairs is becoming increasingly apparent, due to their roles in biological magnetic field sensing and optoelectronic devices. Here, we consider the spin-dynamics of triplet born radical pairs under varying weak magnetic field conditions and in doing so provide a simplified model for understanding the low field effect by identifying triplet states that cannot undergo coherent mixing to singlet states in zero magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Code Availability

The code used for the simulations described in this work is available from the corresponding author on reasonable request.

References

  1. G. Closs, J. Am. Chem. Soc. 91(16), 4552–4554 (1969)

    Article  Google Scholar 

  2. R. Kaptein, J. Oosterhoff, Chem. Phys. Letts. 4, 195 (1969)

    Article  ADS  Google Scholar 

  3. R. Kaptein, J. Oosterhoff, Chem. Phys. Lett. 4, 214–216 (1969)

    Article  ADS  Google Scholar 

  4. R.W. Fessenden, R.H. Schuler, J. Chem. Phys. 39(9), 2147–2195 (1963)

    Article  ADS  Google Scholar 

  5. J. Bargon, H.F., Johnsen, U. Naturforsch. 22, 1551–1555 (1967)

  6. J. Bargon, H.F., Johnsen, U. Naturforsch. 22, 1556–1560 (1967)

  7. H.R. Ward, R.G. Lawler, J. Am. Chem. Soc. 89, 5518–5519 (1967)

    Article  Google Scholar 

  8. R. Sagdeev, Y. Molin, K. Salikhov, T. Leshina, M. Kamha, S. Shein, Org. Magn. Reson. Soc. 5, 603–605 (1973)

    Article  Google Scholar 

  9. B. Brocklehurst, R.S. Dixon, E. Gardy, V. Lopata, M. Quinn, A. Singh, F. Sargent, Chem. Phys. Lett. 28, 361–363 (1974)

    Article  ADS  Google Scholar 

  10. K. Maeda, K.B. Henbest, F. Cintolesi, I. Kuprov, D.T. Rodgers, P.A. Liddell, D. Gust, C.R. Timmel, P.J. Hore, Nature 453, 387–390 (2008)

    Article  ADS  Google Scholar 

  11. P.W. Atkins, G.T. Evans, Chem. Phys. Lett. 25(1), 108–110 (1974)

    Article  ADS  Google Scholar 

  12. B. Brocklehurst, K.A. McLauchlan, Int. J. Radiat. Biol. 69(1), 3–24 (1995)

    Article  Google Scholar 

  13. A.M. Lewis, T.P. Fay, D.E. Manolopoulos, C. Kerpal, S. Richert, C.R. Timmel, J. Chem. Phys. 149, 034103 (2018)

    Article  ADS  Google Scholar 

  14. R. Haberkorn, Mol. Phys. 32(5), 1491–1493 (1976)

    Article  ADS  Google Scholar 

  15. H.J. Hogben, M. Krzystyniak, G.T.P. Charnock, P.J. Hore, I.J. Kuprov, Mag. Reson. 208, 179–194 (2012)

    Article  ADS  Google Scholar 

  16. C.R. Timmel, P.J. Hore, Chem. Phys. Lett. 257, 40–408 (1996)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (Grant number 20H02687).

Author information

Authors and Affiliations

Authors

Contributions

J. R. Woodward did all research and wrote the manuscript.

Corresponding author

Correspondence to Jonathan R. Woodward.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodward, J.R. Triplet Born Radical Pairs and the Low Field Effect. Appl Magn Reson 54, 47–58 (2023). https://doi.org/10.1007/s00723-022-01485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01485-9

Navigation