Skip to main content
Log in

Sodium MRI of Fish on 0.5T Clinical Scanner

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Sodium (23Na) magnetic resonance imaging (MRI) provides information about intra- and intercellular processes useful for medical diagnostics, such as Huntington’s disease, diabetes, etc. 23Na MRI is also used for technological applications such as the analysis of salt content in food products and the assessment of their characteristics using relaxation measurements. Due to 3–4 order difference in the MRI sensitivity for proton and sodium detection, 23Na MRI is usually performed using high-field MRI scanners. Current study explores feasibility of 23Na MRI at the low field 0.5T clinical scanner using different fish species. Using the 3D gradient echo method with the parameters: repetition time = 44.7 ms, echo time = 12 ms, and flip angle = 75°, 23Na MRI of euthanized and thawed fish of different orders (according to biological classification) with an isotropic resolution of 6 mm were obtained. For the assignment of anatomical structures of fish, proton images with an isotropic resolution of 2 mm were also obtained, and combined 1H and 23Na images were constructed. The analysis of the obtained images, including anatomical aspects, has been carried out. Using 23Na nuclear magnetic resonance spectroscopy methods, the rate of sodium excretion was assessed for typical methods of fish conservation for their subsequent use as anatomical specimens and exhibits in museums and scientific laboratories. The results of this work can be used to assess the potential of low-field multinuclear MRI, in biology, and technological (non-medical) applications, particularly, in the analysis of food and the development of methods for preservation of living tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Madelin, J.-S. Lee, R.R. Regatte, A. Jerschow, Prog. Nucl. Magn. Reson. Spectrosc. 79, 14–47 (2014)

    Article  Google Scholar 

  2. J.B. Ra, S.K. Hilal, C.H. Oh, I.K. Mun, Magn. Reson. Med. 7(1), 11–22 (1988)

    Article  Google Scholar 

  3. D. Burstein, C.S. Springer Jr., Magn Reson Med 82(2), 521–524 (2019)

    Article  Google Scholar 

  4. E.A. Mellon, D.T. Pilkinton, C.M. Clark, M.A. Elliott, W.R. Witschey 2nd., A. Borthakur, R. Reddy, Am. J. Neuroradiol. 30(5), 978–984 (2009)

    Article  Google Scholar 

  5. K. Reetz, S. Romanzetti, I. Dogan, C. Saβ, K.J. Werner, J. Schiefer, J.B. Schulz, N.J. Shah, Neuroimage 63(1), 517–524 (2012)

    Article  Google Scholar 

  6. M.V. Karg, A. Bosch, D. Kannenkeril, K. Striepe, C. Ott, M.P. Schneider, F. Boemke-Zelch, P. Linz, A.M. Nagel, J. Titze, M. Uder, R.E. Schmieder, Cardiovasc. Diabetol. 17(1), 5 (2018). https://doi.org/10.1186/s12933-017-0654-z

    Article  Google Scholar 

  7. M. Christa, A.M. Weng, B. Geier, C. Wormann, A. Scheffler, L. Lehmann, J. Oberberger, B.J. Kraus, S. Hahner, S. Stork, T. Klink, W.R. Bauer, F. Hammer, H. Kostler, Eur Heart J. Cardiovasc. Imaging 20(3), 263–270 (2019)

    Article  Google Scholar 

  8. H. Ebrahimnejad, H. Ebrahimnejad, A. Salajegheh, H. Barghi, J. Biomed. Phys. Eng. 8(1), 127–132 (2018)

    Google Scholar 

  9. E. Veliyulin, I.G. Aursand, J. Sci. Food Agric. 87, 2676–2683 (2007)

    Article  Google Scholar 

  10. I.G. Aursand, U. Erikson, E. Veliyulin, Food Chem 120, 482–489 (2010)

    Article  Google Scholar 

  11. M. Gudjónsdóttir, A. Traoré, A. Jónsson, M.G. Karlsdóttir, S. Arason, Food Chem 188, 664–672 (2015)

    Article  Google Scholar 

  12. K. Halbach, Nucl. Instrum. Methods 169, 1–10 (1980)

    Article  ADS  Google Scholar 

  13. C.Z. Cooley, M.W. Haskell, S.F. Cauley, C. Sappo, C.D. Lapierre, C.G. Ha, J.P. Stockmann, L.L. Wald, IEEE Trans Magn. 54(1), 5100112 (2018)

    Article  Google Scholar 

  14. N. Anisimov, D. Volkov, M. Gulyaev, O. Pavlova, Yu. Pirogov, J. Phys. Conf. Ser. 677, 012005 (2016)

    Article  Google Scholar 

  15. N.V. Anisimov, A.A. Tarasova, O.S. Pavlova, D.V. Fomina, A.M. Makurenkov, G.E. Pavlovskaya, Yu.A. Pirogov, Appl. Magn. Reson. 52(3), 221–233 (2021)

    Article  Google Scholar 

  16. N.V. Anisimov, A.A. Tarasova, I.A. Usanov, O.S. Pavlova, D.A. Cheshkov, Yu.A. Pirogov, Electromagnetic waves and electronic systems 26(5), 50–59 (2021)

    Google Scholar 

  17. A.A. Tarasova, N.V. Anisimov, O.S. Pavlova, M.V. Gulyaev, I.A. Usanov, Yu.A. Pirogov, Modern Development of Magnetic Resonance. Abstracts of the International Conference, Kazan, 234–235 (2021).

  18. N.V. Anisimov, E.G. Sadykhov, O.S. Pavlova, D.V. Fomina, Yu.A. Pirogov, Appl. Magn. Reson. 50(10), 1149–1161 (2019)

    Article  Google Scholar 

  19. F. Wetterling, D.M. Corteville, R. Kalayciyan, A. Rennings, S. Konstandin, A.M. Nagel, H. Stark, L.R. Schad, Phys. Med. Biol. 57(14), 4555–4567 (2012)

    Article  Google Scholar 

  20. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  21. Š Zbýň, M.O. Brix, V. Juras, S.E. Domayer, S.M. Walzer, V. Mlynarik, S. Apprich, K. Buckenmaier, R. Windhager, S. Trattnig, Invest Radiol. 50(4), 246–254 (2015)

    Article  Google Scholar 

  22. R.J. Kim, J.A. Lima, E.L. Chen, S.B. Reeder, F.J. Klocke, E.A. Zerhouni, R.M. Judd, Circulation 95, 1877–1885 (1997)

    Article  Google Scholar 

  23. N.N. Gurtovoy, B.S. Matveev, F.Y. Dzerzhinsky, Prakticheskaya zootomiya pozvonochnykh (Practical zootomy of vertebrates) (Vysshaya shkola, Moscow, 1976). (p. 351)

    Google Scholar 

  24. B.J. Balcom, R.P. Macgregor, S.D. Beyea, D.P. Green, R.L. Armstrong, T.W. Bremner, J. Magn. Reson. Series A 123(1), 131–134 (1996)

    Article  ADS  Google Scholar 

  25. M. Robson, P. Gatenhouse, M. Bydder, M. Graeme, J. Comput. Assist. Tomogr. 27(6), 825–846 (2003)

    Article  Google Scholar 

  26. N.K. Bangerter, G.J. Tarbox, M.D. Taylor, J.D. Kaggie, Quant. Imaging Med. Surg. 6(6), 699–714 (2016)

    Article  Google Scholar 

  27. A.A. Tsessarsky, Biol Bull Rev 10(5), 427–440 (2020). https://doi.org/10.1134/S2079086420050084

    Article  Google Scholar 

  28. V. Tchernavin, Proc. Zool. Soc. Lond B108, 347–364 (1938). https://doi.org/10.1111/j.1096-3642.1938.tb00029.x

    Article  Google Scholar 

  29. V. Tchernavin, Trans. Zool. Soc. Lond 24, 103–184 (1938). https://doi.org/10.1111/j.1096-3642.1938.tb00390.x

    Article  Google Scholar 

  30. M. Grosell, M.J. O’Donnell, C.M. Wood, Am. J. Physiol. Regul. Integr. Comp. Physiol. 278(6), R1674-1684 (2000). https://doi.org/10.1152/ajpregu.2000.278.6.R1674 (PMID: 10848538)

    Article  Google Scholar 

  31. J. Maetz, F. Garcia-Romeu, J. Gen. Physiol. 47, 1209–1227 (1964)

    Article  Google Scholar 

  32. M. Fujimoto, J. Katayama, Exp. Eye Res. 57(4), 487–491 (1993). https://doi.org/10.1006/exer.1993.1150 (PMID: 8282034)

    Article  Google Scholar 

  33. D. Purves, G.J. Augustine, D. Fitzpatrick, L.C. Katz, A.-S. LaMantia, J.O. McNamara, S.M. Williams, editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; (2001). Phototransduction. https://www.ncbi.nlm.nih.gov/books/NBK10806/. Accessed 30 May 2022

  34. J. Weiss, M. Pyrski, E. Jacobi, B. Bufe, V. Willnecker, B. Schick, Ph. Zizzari, S.J. Gossage, Ch.A. Greer, T. Leinders-Zufall, C.G. Woods, J.N. Wood, F. Zufall, Nature 472, 186–190 (2011)

    Article  ADS  Google Scholar 

  35. S.H. Kim, D.C. Marcus, Hear Res 280(1–2), 21–29 (2011)

    Article  Google Scholar 

Download references

Funding

This research supported by Russian Fund for Basic Research (RFBR) (Grant # 19-29-10015), the Interdisciplinary Scientific and Educational School “Photonic and Quantum Technologies. Digital Medicine”, and Theoretical Physics and Mathematics Advancement Foundation “BASIS” (Grant # 21-2-1-37-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Anisimov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, N.V., Shakhparonov, V.V., Romanov, A.V. et al. Sodium MRI of Fish on 0.5T Clinical Scanner. Appl Magn Reson 53, 1467–1479 (2022). https://doi.org/10.1007/s00723-022-01480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01480-0

Navigation