Skip to main content

Advertisement

Log in

A Combined Theoretical and Experimental Characterization of a Zirconium MOF with Potential Application to Supercapacitors

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Among the many exciting potential applications for metal − organic frameworks (MOFs) is their use in electrodes for energy storage. Towards this goal, there have been many studies to evaluate MOFs in supercapacitors, including the work by Choi et al. (ACS Nano 8:7451, 2014. https://doi.org/10.1021/nn5027092) who evaluated a series of 23 porous MOFs. Here we present results from the synthesis and characterization of the Zr-MOF they identified as most promising, nMOF-867, Zr6O4(OH)4(BPYDC)6 (BPYDC = 2,2´-bipyridine-5,5·-dicarboxylate). Gas sorption measurements, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry were used to characterize our materials and results are compared to those in the literature. In addition, we used solid-state nuclear magnetic resonance (NMR) to determine the local structure of this material. Comparisons were made between the observed 13C NMR chemical shifts for the pure linker, BPYDC, the final Zr-MOF, and density function theory (DFT) calculations. Ultimately, while we found that the electrochemical performance of the materials prepared in this study was poor, possibly due to their low surface area and instability, we confirmed the applicability of solid-state NMR to characterize the local structure of these and similar materials as we move further towards full in situ studies of MOF-based electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8, 7451 (2014). https://doi.org/10.1021/nn5027092

    Article  Google Scholar 

  2. Y. Zhao, Z. Song, X. Li, Q. Sun, N. ChengS, X.S. Lawes, Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35 (2016). https://doi.org/10.1016/j.ensm.2015.11.005

    Article  Google Scholar 

  3. A.E. Baumann, D.A. Burns, B.Q. Liu, V.S. Thoi, Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Comm. Chem. 2, 86 (2019). https://doi.org/10.1038/s42004-019-0184-6

    Article  Google Scholar 

  4. M. Du, Q. Li, Y. Zhao, C.S. Liu, H. Pang, A review of electrochemical energy storage behaviors based on pristine metal-organic frameworks and their composites. Coord. Chem. Rev. 416, 213341 (2020). https://doi.org/10.1016/j.ccr.2020.213341

    Article  Google Scholar 

  5. J. Yang, P.X. Xiong, C. Zheng, H.Y. Qiu, M.D. Wei, Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2, 16640 (2014). https://doi.org/10.1039/C4TA04140B

    Article  Google Scholar 

  6. S.M. Moosavi, A. Nandy, K.M. Jablonka, D. Ongari, J.P. Janet, P.G. Boyd, Y. Lee, B. Smit, H.J. Kulit, Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068 (2020). https://doi.org/10.1038/s41467-020-17755-8

    Article  ADS  Google Scholar 

  7. R. Diaz, M.G. Orcajo, J.A. Botas, G. Calleja, J. Palma, Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126 (2012). https://doi.org/10.1016/j.matlet.2011.10.046

    Article  Google Scholar 

  8. P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57 (2018). https://doi.org/10.1016/j.jcis.2018.02.010

    Article  ADS  Google Scholar 

  9. D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J.B. Tok, X. Zou, Y. Cui, Z. Bao, Robust and conductive two-dimensional metal− organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30 (2018). https://doi.org/10.1038/s41560-017-0044-5

    Article  ADS  Google Scholar 

  10. J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lemmon, P.K. Thallapally, M.I. Nandasir, B.P. McGrail, S.K. Nune, In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 7214 (2014). https://doi.org/10.1021/am500339x

    Article  Google Scholar 

  11. D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh, N.K. Shrestha, J.K. Lee, S.H. Han, Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology. Microporous Mesoporous Mat. 171, 53 (2013). https://doi.org/10.1016/j.micromeso.2012.12.039

    Article  Google Scholar 

  12. C. Liao, W. Zuo, J. Zhang, B. Zhao, A. Tang, Y. Tang, JXu. Sun, Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. Russ. J. Electrochem. 49, 983 (2013). https://doi.org/10.1134/S1023193512080113

    Article  Google Scholar 

  13. D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220 (2017). https://doi.org/10.1038/nmat4766

    Article  ADS  Google Scholar 

  14. S. Sanati, R. Abazari, J. Albero, A. Morsali, H. García, Z. Liang, R. Zou, In metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem. Int. Ed. 60, 11048 (2021). https://doi.org/10.1002/anie.202010093

    Article  Google Scholar 

  15. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850 (2008). https://doi.org/10.1021/ja8057953

    Article  Google Scholar 

  16. H.C. Hoffmann, M. Debowski, P. Muller, S. Paasch, I. Senkovska, S. Kaskel, E. Brunner, Solid-state NMR spectroscopy of metal-organic framework compounds (MOFs). Materials 5, 2537 (2012). https://doi.org/10.3390/ma5122537

    Article  ADS  Google Scholar 

  17. A. Sutrisno, Y.N. Huang, Solid-state NMR: A powerful tool for characterization of metal-organic frameworks. Solid State Nucl. Mag. Reson. 49–50, 1 (2013). https://doi.org/10.1016/j.ssnmr.2012.09.003

    Article  Google Scholar 

  18. S.E. Ashbrook, D.M. Dawson, V.R. Seymour, Recent developments in solid-state NMR spectroscopy of crystalline microporous materials. Phys. Chem. Chem. Phys. 16, 8223 (2014). https://doi.org/10.1039/C4CP00578C

    Article  Google Scholar 

  19. W. Chen, Y.N. Wu, F.T. Li, Hierarchical structure and molecular dynamics of metal-organic framework as characterized by solid state NMR. J. Chem. 2016, 1 (2016). https://doi.org/10.1155/2016/6510253

    Article  Google Scholar 

  20. B.E.G. Lucier, S.S. Chen, Y.N. Huang, Characterization of metal-organic frameworks: unlocking the potential of solid-state NMR. Accounts Chem. Res. 51, 319 (2018). https://doi.org/10.1021/acs.accounts.7b00357

    Article  Google Scholar 

  21. C. Martineau-Corcos, N.M.R. Crystallography, A tool for the characterization of microporous hybrid solids. Curr. Opin. Colloid In. 33, 35 (2018). https://doi.org/10.1016/j.cocis.2018.01.009

    Article  Google Scholar 

  22. Y.T.A. Wong, V. Martins, B.E.G. Lucier, Y.N. Huang, Solid-state NMR spectroscopy: a powerful technique to directly study small gas molecules adsorbed in metal-organic frameworks. Chem-Eur J 25, 1848 (2019). https://doi.org/10.1002/chem.201803866

    Article  Google Scholar 

  23. E. Brunner, M. Rauche, Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal-organic frameworks. Chem Sci 11, 4297 (2020). https://doi.org/10.1039/D0SC00735H

    Article  Google Scholar 

  24. O. Pecher, J. Carretero-Gonzalez, K.J. Griffith, C.P. Grey, Materials’ methods: NMR in battery research. Chem. Mater. 29, 213 (2017). https://doi.org/10.1021/acs.chemmater.6b03183

    Article  Google Scholar 

  25. E.G. Sorte, N.A. Banek, M.J. Wagner, T.M. Alam, Y.J. Tong, In situ stripline electrochemical NMR for batteries. ChemElectroChem 5, 2336 (2018). https://doi.org/10.1002/celc.201800434

    Article  Google Scholar 

  26. S. Haber, M. Leskes, What can we learn from solid state NMR on the electrode-electrolyte interface? Adv. Mat. 30, 1706496 (2018). https://doi.org/10.1002/adma.201706496

    Article  Google Scholar 

  27. A.I. Freytag, A.D. Pauric, S.A. Krachkovskiy, G.R. Foward, In situ magic-angle spinning Li-7 NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design. J. Am. Chem. Soc. 141, 13758 (2019). https://doi.org/10.1021/jacs.9b06885

    Article  Google Scholar 

  28. S. Krachkovskiy, M.L. Trudeau, K. Zaghib, Application of magnetic resonance techniques to the in situ characterization of li-ion batteries: a review. Materials 13, 1694 (2020). https://doi.org/10.3390/ma13071694

    Article  ADS  Google Scholar 

  29. M. Gauthier, M.H. Nguyen, L. Blondeau, E. Foy, A. Wong, Operando NMR characterization of a metal-air battery using a double-compartment cell design. Solid State Nucl. Magn. Reson. 113, 101731 (2021). https://doi.org/10.1016/j.ssnmr.2021.101731

    Article  Google Scholar 

  30. B.J. Walder, M.S. Conradi, J.J. Borchardt, L.C. Merrill, E.G. Sorte, E.J. Delchmann, T.M. Anderson, T.M. Alam, K.L. Harrison, NMR spectroscopy of coin cell batteries with metal casings. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abg8298

    Article  Google Scholar 

  31. X. Liu, Z. Liang, Y. Xiang, M. Lin, Q. Li, Z. Liu, G. Zhong, R. Fu, Y. Yan, Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization. Adv. Mater. 33, 2005878 (2021). https://doi.org/10.1002/adma.202005878

    Article  Google Scholar 

  32. M.I. Gonzalez, E.D. Bloch, J.A. Mason, S.J. Teat, J.R. Long, Single-crystal-to-single-crystal metalation of a metal-organic framework: a route toward structurally well-defined catalysts. Inorg. Chem. 54, 2995 (2015). https://doi.org/10.1021/acs.inorgchem.5b00096

    Article  Google Scholar 

  33. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938). https://doi.org/10.1021/ja01269a023

    Article  ADS  Google Scholar 

  34. F.H. Larsen, H.J. Jakobsen, P.D. Ellis, N.C. Nielsen, Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors. J. Phys. Chem. A 101, 8597 (1997). https://doi.org/10.1021/jp971547b

    Article  Google Scholar 

  35. I. Hung, R.W. Schurko, Solid-state 91Zr NMR of bis(cyclopentadienyl)dichlorozirconium(IV). J. Phys. Chem. B 108, 9060 (2004). https://doi.org/10.1021/jp040270u

    Article  Google Scholar 

  36. P. Giannozzi et al., Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens Mat. 29, 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79

    Article  Google Scholar 

  37. A. Dal Corso, Pseudopotentials periodic table: from H to Pu. Comp. Mater. Sci. 95, 337 (2014). https://doi.org/10.1016/j.commatsci.2014.07.043

    Article  Google Scholar 

  38. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). https://doi.org/10.1103/PhysRevB.43.1993

    Article  ADS  Google Scholar 

  39. C. C. Wang, 2,2'-Bipyridine-5,5'-dicarboxylic acid, Acta. Crystallogr. Sect. E.-Struct. Rep. Online 65, O2081-U1362 (2009). https://doi.org/10.1107/s1600536809030207

  40. M.C. Lawrence, M.J. Katz, Analysis of the water adsorption isotherms in UiO-based metal-organic frameworks. J. Phys. Chem. C 126, 1107 (2022). https://doi.org/10.1021/acs.jpcc.1c05190

    Article  Google Scholar 

  41. M.J. Katz, Z.J. Brown, Y.J. Colon, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivative. Chem. Commun. 49, 9449 (2013). https://doi.org/10.1039/C3CC46105J

    Article  Google Scholar 

  42. J.H. Park, K.M. Choi, D.K. Lee, B.C. Moon, S.R. Shin, M.K. Song, J.K. Kang, Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals. Sci. Rep. 6, 5555 (2016). https://doi.org/10.1038/srep25555

    Article  Google Scholar 

  43. J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y.-G. Huang, K.S. Walton, Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 1, 5642 (2013). https://doi.org/10.1039/C3TA10662D

    Article  Google Scholar 

  44. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 48, 11656 (2012). https://doi.org/10.1039/C2CC34620F

    Article  Google Scholar 

  45. B. Rungtaweevoranit, J. Baek, J.R. Araujo, B.S. Archanjo, K.M. Choi, O.M. Yaghi, G.A. Somorjai, Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 16, 7645 (2016). https://doi.org/10.1021/acs.nanolett.6b03637

    Article  ADS  Google Scholar 

  46. X. Zhang, P. Huang, A. Liu, M. Zhu, A metal-organic framework for oxidative desulfurization: UIO-66(Zr) as a catalyst. Fuel 209, 417 (2017). https://doi.org/10.1016/j.fuel.2017.08.025

    Article  Google Scholar 

  47. J. Liu, Z. Li, X. Zhang, K.I. Otake, L. Zhang, A.W. Peters, M.J. Young, N.M. Bedford, S.P. Letourneau, D.J. Mandia, J.W. Elam, O.K. Farha, J.T. Hupp, Introducing nonstructural ligands to zirconia-like metal-organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal. 9, 3198 (2019). https://doi.org/10.1021/acscatal.8b04828

    Article  Google Scholar 

  48. X. Xue, J. Yu, Y. Han, X. Xiao, Z. Shi, H. Mao, D. Mao, Zr-based metal-organic frameworks drived Rh-Mn catalysts for highly selective CO hydrogenation to C-2 oxygenates. J. Ind. Eng. Chem. 86, 220 (2020). https://doi.org/10.1016/j.jiec.2020.03.008

    Article  Google Scholar 

  49. D.-E. Jiang, Z. Jin, D. Henderson, J. Wu, Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor. J. Phys. Chem. Lett. 3, 1727 (2012). https://doi.org/10.1021/jz3004624

    Article  Google Scholar 

  50. J. Li, S. Li, A. Zheng, X. Liu, N. Yu, F. Deng, Solid-state NMR studies of host–guest interaction between UiO-67 and light alkane at room temperature. J. Phys. Chem. C 121, 14261 (2017). https://doi.org/10.1021/acs.jpcc.7b04611

    Article  Google Scholar 

  51. M.C. Lawrence, C. Schneider, M.J. Katz, Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chem. Commun. 52, 4971 (2016). https://doi.org/10.1039/C5CC09919F

    Article  Google Scholar 

  52. Y. Xiao, Y. Chu, S. Li, Y. Su, J. Tang, J. Xu, F. Deng, Primary adsorption sites of light alkanes in multivariate UiO-66 at room temperature as revealed by solid-state NMR. J. Phys. Chem. C 124, 3738 (2020). https://doi.org/10.1021/acs.jpcc.0c00184

    Article  Google Scholar 

  53. P. Duan, J.C. Moreton, S.R. Tavares, R. Semino, G. Maurin, S.M. Cohen, K. Schmidt-Rohr, Polymer infiltration into metal-organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 141, 7589 (2019). https://doi.org/10.1021/jacs.9b02789

    Article  Google Scholar 

  54. J. Tang, S. Li, Y. Chu, Y. Xiao, J. Xu, F. Deng, Solid-state NMR studies of the acidity of functionalized metal-organic framework UiO-66 materials. Magn. Reson. Chem. 58, 1091 (2020). https://doi.org/10.1002/mrc.4923

    Article  Google Scholar 

  55. P. Neves, A.C. Gomes, T.R. Amarante, F.A.A. Paz, M. Pillinger, I.S. Gonçalves, A.A. Valente, Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based metal-organic framework and its application in catalytic olefin epoxidation. Microporous Mesoporous Mater. 202, 106 (2015). https://doi.org/10.1016/j.micromeso.2014.09.046

    Article  Google Scholar 

  56. A. Krajnc, T. Kos, N.Z. Logar, G. Mali, A simple NMR-based method for studying the spatial distribution of linkers within mixed-linker metal-organic frameworks. Angew. Chem. Int. 54, 10535 (2015). https://doi.org/10.1002/anie.201504426

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research comes from the Office of Naval Research (ONR) through the base program NRL core funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Klug.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hangarter, C.M., Dyatkin, B., Laskoski, M. et al. A Combined Theoretical and Experimental Characterization of a Zirconium MOF with Potential Application to Supercapacitors. Appl Magn Reson 53, 915–930 (2022). https://doi.org/10.1007/s00723-022-01471-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01471-1

Navigation