Skip to main content
Log in

Manifestations of Spinodal Decomposition into Dilute Pd1-xFex “Phases” in Iron-Implanted Palladium Films: FMR Study

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Palladium–iron alloys produced by high-dose implantation of iron ions into epitaxial palladium films were investigated with the ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM) techniques. The samples reveal distinct multiple FMR responses depending on the dose of iron ion implantation. The post-implantation annealing at 770 K does not bring the implanted films to a homogeneous solid solution state, as might be expected from the Pd–Fe phase diagram. On the contrary, the system approaches a stable state composed of several magnetic phases. FMR spectra exhibit an angular behavior specific for a stack of interacting magnetic layers. This observation, correlated with the magnetometry data, indicates that the palladium–iron binary alloy has a previously unknown tendency towards spinodal decomposition into isostructural phases with well-defined iron concentrations and, accordingly, with different temperatures of ferromagnetic ordering and saturation magnetizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon a reasonable request.

References

  1. G.J. Nieuwenhuys, Adv. Phys. 24, 515 (1975). https://doi.org/10.1080/00018737500101461

    Article  ADS  Google Scholar 

  2. S.V. Vonsovskii, R. Hardin, Magnetism, vol. 2 (Wiley, New York, 1974), p. 635

    Google Scholar 

  3. V.V. Bol’ginov, V.S. Stolyarov, D.S. Sobanin, A.L. Karpovich, V.V. Ryazanov, JETP Lett. 95, 366 (2012). https://doi.org/10.1134/S0021364012070028

    Article  ADS  Google Scholar 

  4. T.I. Larkin, V.V. Bol’ginov, V.S. Stolyarov, V.V. Ryazanov, I.V. Vernik, S.K. Tolpygo, O.A. Mukhanov, Appl. Phys. Lett. 100, 222601 (2012). https://doi.org/10.1063/1.4723576

    Article  ADS  Google Scholar 

  5. V.V. Ryazanov, V.V. Bol’ginov, D.S. Sobanin, I.V. Vernik, S.K. Tolpygo, A.M. Kadin, O.A. Mukhanov, Phys. Procedia. 36, 35 (2012). https://doi.org/10.1016/j.phpro.2012.06.126

    Article  ADS  Google Scholar 

  6. I.V. Vernik, V.V. Bol’ginov, S.V. Bakurskiy, A.A. Golubov, M.Y. Kupriyanov, V.V. Ryazanov, O.A. Mukhanov, IEEE Trans. Appl. Supercond. 23, 1701208 (2013). https://doi.org/10.1109/TASC.2012.2233270

    Article  ADS  Google Scholar 

  7. J.A. Glick, R. Loloee, W.P. Pratt, N.O. Birge, IEEE Trans. Appl. Supercond. 27, 1 (2016). https://doi.org/10.1109/TASC.2016.2630024

    Article  Google Scholar 

  8. I.A. Golovchanskiy, V.V. Bol'ginov, N.N. Abramov, V.S. Stolyarov, A. Ben Hamida, V.I. Chichkov, D. Roditchev, V.V. Ryazanov, J. Appl. Phys. 120, 163902 (2016). https://doi.org/10.1063/1.4965991

    Article  ADS  Google Scholar 

  9. I.A. Garifullin, D.A. Tikhonov, N.N. Garif’yanov, L. Lazar, Yu.V. Goryunov, S.Y. Khlebnikov, L.R. Tagirov, K. Westerholt, H. Zabel, Phys. Rev. B. 66, 020505R (2002). https://doi.org/10.1103/PhysRevB.66.020505

    Article  ADS  Google Scholar 

  10. A.S. Sidorenko, V.I. Zdravkov, A.A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M. Schreck, S. Klimm, S. Horn, L.R. Tagirov, R. Tidecks, Ann. Phys. 12, 37 (2003). https://doi.org/10.1002/andp.200310005

    Article  Google Scholar 

  11. I.C. Moraru, W.P. Pratt Jr., N.O. Birge, Phys. Rev. Lett. 96, 037004 (2006). https://doi.org/10.1103/PhysRevLett.96.037004

    Article  ADS  Google Scholar 

  12. M. Fauré, A.I. Buzdin, A.A. Golubov, M.Yu. Kupriyanov, Phys. Rev. B. 73, 064505 (2006). https://doi.org/10.1103/PhysRevB.73.064505

    Article  ADS  Google Scholar 

  13. B.M. Niedzielski, S.G. Diesch, E.C. Gingrich, Y. Wang, R. Loloee, W.P. Pratt Jr., N.O. Birge, IEEE Trans. Appl. Supercond. 24, 1800307 (2014). https://doi.org/10.1109/TASC.2014.2311442

    Article  Google Scholar 

  14. E.C. Gingrich (2014) Ph.D. Thesis, Michigan State Univ, EastLansing, MI

  15. J.A. Glick, R. Loloee, W.P. Pratt Jr., N.O. Birge, IEEE Trans. Appl. Supercond. 27, 1800205 (2017). https://doi.org/10.1109/TASC.2016.2630024

    Article  Google Scholar 

  16. L.S. Uspenskaya, A.L. Rakhmanov, L.A. Dorosinskii, A.A. Chugunov, V.S. Stolyarov, O.V. Skryabina, S.V. Egorov, JETP Lett. 97, 155 (2013). https://doi.org/10.1134/S0021364013030107

    Article  ADS  Google Scholar 

  17. L.S. Uspenskaya, A.L. Rakhmanov, L.A. Dorosinskii, S.I. Bozhko, V.S. Stolyarov, V.V. Bol’ginov, Mater. Res. Express. 1, 036104 (2014). https://doi.org/10.1088/2053-1591/1/3/036104

    Article  ADS  Google Scholar 

  18. V.V. Bol’ginov, O.A. Tikhomirov, L.S. Uspenskaya, JETP Lett. 105, 169 (2017). https://doi.org/10.1134/S0021364017030055

    Article  ADS  Google Scholar 

  19. L.S. Uspenskaya, I.V. Shashkov, Phys. B: Condens. Matter 549, 15 (2018). https://doi.org/10.1016/j.physb.2017.09.089

    Article  Google Scholar 

  20. A. Esmaeili, I.V. Yanilkin, A.I. Gumarov, I.R. Vakhitov, B.F. Gabbasov, A.G. Kiiamov, A.M. Rogov, Y.N. Osin, A.E. Denisov, R.V. Yusupov, L.R. Tagirov, Thin Solid Films 669, 338 (2019). https://doi.org/10.1016/j.tsf.2018.11.015

    Article  ADS  Google Scholar 

  21. A. Esmaeili, I.R. Vakhitov, I.V. Yanilkin, A.I. Gumarov, B.M. Khaliulin, B.F. Gabbasov, M.N. Aliyev, R.V. Yusupov, L.R. Tagirov, Appl. Magn. Reson. 49, 175 (2018). https://doi.org/10.1007/s00723-017-0946-1

    Article  Google Scholar 

  22. A.V. Petrov, R.V. Yusupov, S.I. Nikitin, A.I. Gumarov, I.V. Yanilkin, A.G. Kiiamov, L.R. Tagirov, JETP Lett. 109, 266 (2019). https://doi.org/10.1134/S0021364019150104

    Article  Google Scholar 

  23. A. Esmaeili, I.V. Yanilkin, A.I. Gumarov, I.R. Vakhitov, B.F. Gabbasov, D.A. Tatarsky, R.V. Yusupov, L.R. Tagirov, Sci. China Mater. 64, 1246 (2021). https://doi.org/10.1007/s40843-020-1479-0

    Article  Google Scholar 

  24. A.I. Gumarov, I.V. Yanilkin, R.V. Yusupov, A.G. Kiiamov, L.R. Tagirov, R.I. Khaibullin, Mater. Lett. 305, 130783 (2021). https://doi.org/10.1016/j.matlet.2021.130783

    Article  Google Scholar 

  25. L.A. Larson, J.M. Williams, M.I. Current, Rev. Accel. Sci. Technol. Accel. Appl. Ind. Environ. 04, 11 (2012). https://doi.org/10.1142/S1793626811000616

    Article  Google Scholar 

  26. R.W. Hamm, M.E. Hamm (eds.), Industrial accelerators and their applications (World Scientific, Singapore, 2012), p. 436. https://doi.org/10.1142/7745

    Book  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  28. O. Kubaschewski, Iron—binary phase diagrams (Springer-Verlag, Berlin, Heidelberg, 1982), p. 89

    Google Scholar 

  29. T.B. Massalski (ed.), Binary alloy phase diagrams (ASM International, Almere, 1986), p. 1093

    Google Scholar 

  30. J.W. Cahn, Acta. Metall. 9, 795 (1961). https://doi.org/10.1016/0001-6160(61)90182-1

    Article  Google Scholar 

  31. V.P. Skripov, A.V. Skripov, Sov. Phys. Uspekhi. 22, 389 (1979). https://doi.org/10.1070/PU1979v022n06ABEH005571

    Article  ADS  Google Scholar 

  32. G. Kostorz (ed.), Phase transformations in materials (Wiley VCH Verlag GmbH, Weinheim, 2001). https://doi.org/10.1002/352760264X

    Book  Google Scholar 

  33. J. Winter, Magnetic resonance in metals (Oxford University Press, Oxford, 1971), p. 222

    Google Scholar 

  34. B. Heinrich, J.F. Cochran, Adv. Phys. 42, 523 (1993). https://doi.org/10.1080/00018739300101524

    Article  ADS  Google Scholar 

  35. M. Farle, Rep. Progr. Phys. 61, 755 (1998). https://doi.org/10.1088/0034-4885/61/7/001

    Article  ADS  Google Scholar 

  36. B. Heinrich, J.A.C. Bland (eds.), Ultrathin magnetic structures II. Measurement techniques and novel magnetic properties (Springer-Verlag, Berlin, Heidelberg, 2005), p. 361

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Golovchanskiy Igor (MISIS, Moscow) for a fruitful discussion of the results. Synthesis and analysis of the films were carried out at the PCR Federal Center of Shared Facilities of KFU with the running costs covered by the Program of Competitive Growth of Kazan Federal University.

Funding

This work was supported by the RFBR Grant No. 20-02-00981.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gumarov.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumarov, A.I., Yanilkin, I.V., Rodionov, A.A. et al. Manifestations of Spinodal Decomposition into Dilute Pd1-xFex “Phases” in Iron-Implanted Palladium Films: FMR Study. Appl Magn Reson 53, 875–886 (2022). https://doi.org/10.1007/s00723-022-01464-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01464-0

Navigation