Skip to main content
Log in

Solid-State 207Pb NMR Spectroscopy and Relativistic Quantum Chemical Calculations of Red Pigments: Identification in Cultural Heritage Materials

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Solid-state \(^{207}\)Pb NMR spectroscopy was used to identify the pigments painted on the surface of a cultural heritage material. The \(^{207}\)Pb NMR magic-angle-spinning spectrum was measured under 18.8 T for the 1.0% lead-containing pigment sample of a historical clay doll. By comparing with the reference spectrum and NMR parameters, minium (Pb\(_3\)O\(_4\)) was determined to be used as a red pigment in the doll. Further, spectral simulation and relativistic density functional theory calculations were carried out for Pb\(_3\)O\(_4\) and related compounds. It was confirmed for the large chemical shift anisotropy of the Pb\(^\mathrm {II}\) species with the hemi-directed structure that the calculations with the minimum PbO\(_n\) moiety can generate incorrect values and that large size clusters are needed for improving accuracy even with the fully relativistic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.R. Derrick, D.C. Stulik, J.M. Landry, Infrared Spectroscopy in Conservation Science (Getty Conservation Institute, Los Angels, 1999)

    Google Scholar 

  2. L. Burgio, Analysis of Pigments on Manuscripts by Raman Spectroscopy: Advantages and Limitations, in The Technological Study of Books and Manuscripts as Artefacts—Research questions and analytical solutions, ed. by S. Neate, D. Howell (Archaeopress, R. Ovenden and A. M. Pollard, 2011)

  3. K. Castro, M.P. Alonso, M.D. Rodriguez-Laso, J.M. Madariaga, Anal. Chem. 75, 215A (2003)

    Article  Google Scholar 

  4. S.A. Centeno, J. Raman Spectrosc. 47, 9 (2016)

    Article  ADS  Google Scholar 

  5. G. Moretti, C. Gervais, J. Raman Spectrosc. 49, 1198 (2017)

    Article  ADS  Google Scholar 

  6. C. Namowicz, K. Trentelman, C. McGlinchey, Powder Diffr. 24, 124 (2016)

    Article  ADS  Google Scholar 

  7. R. Mulholland, D. Howell, A. Beeby, C.E. Nicholson, K. Domoney, Hert. Sci. 5, 43 (2017)

    Article  Google Scholar 

  8. C. Miliani, M. Ombelli, A. Morresi, A. Romani, Surf. Coat. Technol. 151–152, 276 (2002)

    Article  Google Scholar 

  9. S. Vahur, A. Teearu, P. Peets, L. Joosu, I. Leito, Anal. Bioanal. Chem. 408, 3373 (2016)

    Article  Google Scholar 

  10. M. Bacci, R. Chiari, S. Porcinai, B. Radicati, Chemom. Intell. Lab. Syst. 39, 115 (1997)

    Article  Google Scholar 

  11. J.R. Mansfield, M. Attas, C. Majzels, E. Cloutis, C. Collins, H.H. Mantsch, Vib. Spectrosc. 28, 59 (2002)

    Article  Google Scholar 

  12. C. Grazia, D. Buti, A. Amat, F. Rosi, A. Romani, D. Domenici, A. Sgamellotti, C. Miliani, Herit. Sci. 8, 1 (2020)

    Article  Google Scholar 

  13. K. Keune, A. van Loon, Microsc. Microanal. 17, 5 (2011)

    Article  Google Scholar 

  14. M.W. Pendleton, D.K. Washburn, E.A. Ellis, B.B. Pendleton, Herit. Sci. 4, 11 (2016)

    Article  Google Scholar 

  15. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, London, 1994)

    Google Scholar 

  16. C.P. Slichter, Principles of Magnetic Resonance (Springer, Tokyo, 1990)

    Book  Google Scholar 

  17. B. Wrackmeyer, Ann. Rep. NMR Spectrosc. 47, 1 (2002)

    Article  Google Scholar 

  18. C. Dybowski, G. Neue, Prog. Nucl. Magn. Reson. Spectrosc. 41, 153 (2002)

    Article  Google Scholar 

  19. S.A. Southern, D. Errulat, J.M. Frost, B. Gabidullin, D.L. Bryce, Faraday Discuss. 203, 165 (2017)

    Article  ADS  Google Scholar 

  20. F. Fayon, I. Farnan, C. Bessada, J. Coutures, D. Massiot, J.P. Coutures, J. Am. Chem. Soc. 119, 6837 (1997)

    Article  Google Scholar 

  21. S.P. Gabuda, S.G. Kozlova, V.V. Terskinkh, C. Dybowski, G. Neue, D.L. Perry, Chem. Phys. Lett. 305, 353 (1999)

    Article  ADS  Google Scholar 

  22. S.P. Gabuda, S.G. Kozlova, V.V. Terskikh, C. Dybowski, G. Neue, D.L. Perry, Solid State Nucl. Magn. Reson. 15, 103 (1999)

    Article  Google Scholar 

  23. E. Kupce, R. Freeman, J. Magn. Reson. A 115, 273 (1995)

    Article  ADS  Google Scholar 

  24. R. Bhattacharyya, L. Frydman, J. Chem. Phys. 127, 194503 (2007)

    Article  ADS  Google Scholar 

  25. L.A. O’Dell, R.W. Schurko, Chem. Phys. Lett. 464, 92 (2008)

    Article  ADS  Google Scholar 

  26. G. Kervern, G. Pintacuda, L. Emsley, Chem. Phys. Lett. 435, 157 (2007)

    Article  ADS  Google Scholar 

  27. A.W. MacGregor, L.A. O’Dell, R.W. Schurko, J. Magn. Reson. 208, 103 (2011)

    Article  ADS  Google Scholar 

  28. J. Catalano, Y. Yao, A. Murphy, N. Zumbulyadis, S.A. Centeno, C. Dybowski, Appl. Spectrosc. 68, 280 (2014)

    Article  ADS  Google Scholar 

  29. J. Catalano, A. Murphy, Y. Yao, F. Alkan, N. Zurnbulyadis, S.A. Centeno, C. Dybowski, J. Phys. Chem. A 118, 7952 (2014)

    Article  Google Scholar 

  30. C.E. Avalos, B.J. Walder, J. Viger-Gravel, A. Magrez, L. Emsley, Phys. Chem. Chem. Phys. 21, 1100 (2019)

    Article  Google Scholar 

  31. L.R. Becerra, G.J. Gerfen, B.F. Bellew, J.A. Bryant, D.A. Hall, S.J. Inati, R.T. Weber, S. Un, T.F. Prisner, A.E. McDermott, K.W. Fishberin, K.E. Kreischer, R.J. Temkin, D.J. Singel, R.G. Griffin, J. Magn. Reson. A 117, 28 (1995)

    Article  ADS  Google Scholar 

  32. A.B. Barnes, M.L. Mak-Jurkauskas, Y. Matsuki, V.S. Bajaj, P.C.A. van der Wel, R. DeRocher, J. Bryant, J.R. Sirigiri, R.J. Temkin, J. Lugtenburg, J. Herzfeld, R.G. Griffin, J. Magn. Reson. 198, 261 (2009)

    Article  ADS  Google Scholar 

  33. M. Rosay, J.C. Lansing, K.C. Haddad, W.W. Bachovchin, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Am. Chem. Soc. 125, 13626 (2003)

    Article  Google Scholar 

  34. T. Kobayashi, F.A. Perras, A. Murphy, Y. Yao, J. Catalano, S.A. Centeno, C. Dybowski, N. Zumbulyadis, M. Pruski, Dalton Trans. 46, 3535 (2017)

    Article  Google Scholar 

  35. M.P. Hanrahan, L. Men, B.A. Rosales, J. Vela, A.J. Rossini, Chem. Mater. 30, 7005 (2018)

    Article  Google Scholar 

  36. C. Dybowski, M.L. Smith, M.A. Hepp, E.J. Gaffney, G. Neue, D.L. Perry, Appl. Spectrosc. 52, 426 (1998)

    Article  ADS  Google Scholar 

  37. A. Glatfelter, C. Dybowski, D.D. Kragten, S. Bai, D.L. Perry, J. Lockard, Spectrochim. Acta A 66, 1361 (2007)

    Article  ADS  Google Scholar 

  38. O. Dmitrenko, S. Bai, P.A. Beckmann, S. van Bramer, A.J. Vega, C. Dybowski, J. Phys. Chem. A 112, 3046 (2008)

    Article  Google Scholar 

  39. A. Glatfelter, S. Bai, O. Dmitrenko, D.L. Perry, S.E. Van Bramer, C. Dybowski, Can. J. Chem. 89, 863 (2011)

    Article  Google Scholar 

  40. L. Gasque, M.A. Verhoeven, S. Bernes, F. Barrios, J.G. Haasnoot, J. Reedijk, Eur. J. Inorg. Chem. 2008, 4395 (2008)

    Article  Google Scholar 

  41. M. de Oliveira, R.J. Amjad, A.S.S. de Camargo, H. Eckert, J. Phys. Chem. C 122, 23698 (2018)

    Article  Google Scholar 

  42. C.E. Avalos, B.J. Walder, L. Emsley, J. Phys. Chem. C 123, 15744 (2019)

    Article  Google Scholar 

  43. M. Aebli, L. Piveteau, O. Nazarenko, B.M. Benin, F. Krieg, R. Verel, M.V. Kovalenko, Sci. Rep. 10, 8229 (2020)

    Article  ADS  Google Scholar 

  44. R.E. Taylor, F. Alkan, D. Koumoulis, M.P. Lake, D. King, C. Dybowski, L.S. Bouchard, J. Phys. Chem. C 117, 8959 (2013)

    Article  Google Scholar 

  45. M. Murakami, Y. Morita, M. Mizuno, J. Phys. Chem. C 121, 2627 (2017)

    Article  Google Scholar 

  46. M. Murakami, F. Fujisaki, Y. Morita, Solid State Ion. 355, 115398 (2020)

    Article  Google Scholar 

  47. O.E.O. Zeman, R. Hochleitner, W.W. Schmahl, K. Karaghiosoff, T. Brauniger, Am. Mineral. 106, 541 (2021)

    Article  ADS  Google Scholar 

  48. J.S. Casas, J. Sordo (eds.), Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects (Elsevier, UK, 2006)

  49. F. Alkan, C. Dybowski, J. Phys. Chem. A 120, 161 (2016)

    Article  Google Scholar 

  50. B.J. Greer, V.K. Michaelis, M.J. Katz, D.B. Leznoff, G. Schreckenbach, S. Kroeker, Chem. Eur. J. 17, 3609 (2011)

    Article  Google Scholar 

  51. J.R. Thompson, D. Snider, J.E.C. Wren, S. Kroeker, V.E. Williams, D.B. Leznoff, Eur. J. Inorg. Chem. 2017, 88 (2017)

    Article  Google Scholar 

  52. O. Dmitrenko, S. Bai, C. Dybowski, Solid State Nucl. Magn. Reson. 34, 186 (2008)

    Article  Google Scholar 

  53. F. Alkan, C. Dybowski, Phys. Chem. Chem. Phys. 17, 25014 (2015)

    Article  Google Scholar 

  54. B. Adrjan, W. Makulski, K. Jackowski, T.B. Demissie, K. Ruud, A. Antusek, M. Jaszunski, Phys. Chem. Chem. Phys. 18, 16483 (2016)

    Article  Google Scholar 

  55. C.F. Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theor. Chem. Account. 99, 391 (1998)

    Google Scholar 

  56. S.K. Wolff, T. Ziegler, E. van Lenthe, E.J. Baerends, J. Chem. Phys. 110, 7689 (1999)

    Article  ADS  Google Scholar 

  57. M. Repisky, S. Komorovsky, M. Kadek, L. Konecny, U. Ekstrom, E. Malkin, M. Kaupp, K. Ruud, O.L. Malkina, V.G. Malkin, J. Chem. Phys. 152, 184101 (2020)

    Article  ADS  Google Scholar 

  58. J. Catalano, V.D. Tullio, M. Wagner, N. Zumbulyadis, S.A. Centeno, C. Dybowski, Magn. Reson. Chem. 58, 798 (2020)

    Article  Google Scholar 

  59. S. Svarcova, E. Koci, P. Bezdicka, S. Garrappa, L. Kobera, J. Plocek, J. Brus, M. Stastny, D. Hradil, Dalton Trans. 49, 5044 (2020)

    Article  Google Scholar 

  60. D.W. Alderman, M.S. Solum, D.W. Grant, J. Chem. Phys. 84, 3717 (1986)

    Article  ADS  Google Scholar 

  61. J. Mason, Solid State Nucl. Magn. Reson. 2, 285 (1993)

    Article  Google Scholar 

  62. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  63. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  64. K.G. Dyall, Theor. Chem. Acc. 99, 366 (1998)

    Google Scholar 

  65. K.G. Dyall, Theor. Chem. Acc 108, 335 (2002)

    Article  Google Scholar 

  66. K.G. Dyall, Theor. Chem. Acc 115, 441 (2006)

    Article  Google Scholar 

  67. F. Jensen, J. Chem. Phys. 115, 9113 (2001)

    Article  ADS  Google Scholar 

  68. S. Komorovsky, M. Repisky, O.L. Malkina, V.G. Malkin, I.M. Ondik, M. Kaupp, J. Chem. Phys. 128, 104101 (2008)

    Article  ADS  Google Scholar 

  69. S. Komorovsky, M. Repisky, O.L. Malkina, V.G. Malkin, J. Chem. Phys. 132, 154101 (2010)

    Article  ADS  Google Scholar 

  70. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, And D (J. Fox, Gaussian Inc, Wallingford CT, 2016)

  71. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  72. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  73. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  74. T.V. Russo, R.L. Martin, P.J. Hay, J. Chem. Phys. 99, 17085 (1995)

    Article  Google Scholar 

  75. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  ADS  Google Scholar 

  76. A.J. Pell, G. Pintacuda, C.P. Grey, Prog. Nucl. Magn. Reson. Spectrosc. 111, 1 (2019)

    Article  Google Scholar 

  77. T. Iijima, T. Shimizu, A. Goto, K. Deguchi, T. Nakai, R. Ohashi, M. Saito, J. Phys. Chem. Solids 135, 109088 (2019)

    Article  Google Scholar 

  78. T. Iijima, S. Ohki, M. Tansho, Solid State Nucl. Magn. Reson. 112, 101709 (2021)

    Article  Google Scholar 

  79. S.T. Gross, J. Am. Chem. Soc. 65, 1107 (1943)

    Article  Google Scholar 

  80. G. Neue, C. Dybowski, M.L. Smith, M.A. Hepp, D.L. Perry, Solid State Nucl. Magn. Reson. 6, 241 (1996)

    Article  Google Scholar 

  81. O.E.O. Zeman, J. Steinadler, R. Hochleitner, T. Bräuniger, Crystals 9, 43 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIMS microstructural characterization platform as a program of the Nanotechnology Platform of MEXT, Japan, Grant no. JPMXP09A19NM0173. Financial support from the JSPS [Grant-in-Aid for Scientific Research (C) No. 17K05741] is gratefully acknowledged. We would like to thank Editage for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Iijima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 256 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iijima, T., Abe, T., Deguchi, K. et al. Solid-State 207Pb NMR Spectroscopy and Relativistic Quantum Chemical Calculations of Red Pigments: Identification in Cultural Heritage Materials. Appl Magn Reson 53, 371–385 (2022). https://doi.org/10.1007/s00723-021-01449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01449-5

Navigation