Skip to main content
Log in

Structure and Properties of Polycrystalline TiO2-Doped with Chromium Ions Studied by EPR and Optical Methods

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Paramagnetic centers (PCs) of Ti3+ and Cr3+ were detected in polycrystalline Cr-doped TiO2 (rutile) semiconductors in which the chromium content varied from 0.1 to 1.7 at.%. For the first time, the energy position of the Cr3+ ion in the band gap of such oxide semiconductors was determined using the electron paramagnetic resonance (EPR) technique with illumination in situ. The irradiation effect was reversible. We believe that the increase of the EPR signal intensity under illumination is a result of capturing the photoexcited charge carriers by chromium ions with their subsequent transition to the state of Cr3+ paramagnetic centers (PCs) whose energy levels are located practically in the middle of the band gap, ca. 1.45 eV below the conduction band of TiO2 semiconductor. The band gap was determined by optical experiments. Spin Hamiltonian parameters (g, D, and E values) have been obtained by EPR spectra simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Energy Resources through Photochemistry and Catalysis, M. Graetzel, (Ed.) (Academic Press, New York, 1983)

  2. Photoelectrochemistry, Photocatalysis and Photoreactors, M. Schiavello (Ed.) (Reidel Publ. Co., Dordrecht, 1985)

  3. Photocatalytic conversion of Solar energy, K.I. Zamaraev, V.N. Parmon (Eds.) (Nauka, Novosibirsk, 1991) [in Russian]

  4. Yu.V. Pleskov, Solar Energy Conversion (A Photoelectrochemical Approach) (Springer Verlag, New York, 1990)

    Book  Google Scholar 

  5. R. Memming, Photoelectrochemical Solar Energy Conversion (Springer, Hamburg, 2005)

    Google Scholar 

  6. J. Augustinski, J. Hinden, C. Stalder, J. Electrochem. Soc. 124, 1063 (1977)

    Article  ADS  Google Scholar 

  7. H.P. Maruska, A.K. Ghosh, Solar Energy Mater. 1, 237 (1979)

    Article  Google Scholar 

  8. P. Salvador, Solar Energy Mater. 2, 413 (1980)

    Article  ADS  Google Scholar 

  9. Photochemical Conversion and Storage of Solar Energy, E. Pelizzetti, M. Schiavello (Eds.) Kluwer, Dordrecht, 1991)

  10. V. M. Arutyunian, in: Hydrogen Energy Progress, J.C. Bolcich, T.N. Veziroglu (Eds.) (EAAH, Buenos Aires, 1998), v. 1, p. 13.

  11. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Sol. Energy 78, 581 (2005)

    Article  ADS  Google Scholar 

  12. A.K. Ghosh, H.P. Maruska, J. Electrochem. Soc. 124, 1516 (1977)

    Article  ADS  Google Scholar 

  13. A.G. Sarkisyan, V.M. Arutyunian, G.M. Stepanyan, A.A. Pogosyan, E.A. Khachaturyan, Electrochin. 21, 261 (1985)

    Google Scholar 

  14. V.M. Arutyunian, A.G. Sarkisyan, J.R. Panosyan, V.M. Arakelyan, A.O. Arakelyan, G.E. Shakhnazaryan, Electrochin. 17, 1471 (1981)

    Google Scholar 

  15. A.G. Sarkisyan, V.M. Arakelyan, G.M. Stepanyan, R.S. Akopyan, E.L. Ignatyan, A.L. Margaryan, Sci. Notes of Yerevan State Univeraity, No. 1(146), 79 (1981) [in Russian]

  16. B. Tian, C. Li, J. Zhang, Chem. Eng. J. 191, 402 (2012)

    Article  Google Scholar 

  17. K.A. Michalow, E.H. Otal, D. Burnat, G. Fortunato, H. Emerich, D. Ferri, A. Heel, T. Graule, Catal. Today 209, 47 (2013)

    Article  Google Scholar 

  18. E.D. Jeong, P.H. Borse, J.S. Jang, J.S. Lee, O.-S. Jung, H. Chang, J.S. Jin, M.S. Won, H.G. Kim, J. Ceramic Process. Res. 9, 250 (2008)

    Google Scholar 

  19. S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M.N. Hedhili, D.H. Anjum, M. Harb, C. Geantet, J.-M. Basset, E. Puzenat, Chemsuschem 7, 1361 (2014)

    Article  Google Scholar 

  20. R. Lopez, R. Gomez, S. Oros-Ruiz, Catal. Today 166, 159 (2011)

    Article  Google Scholar 

  21. J. Bansal, R. Tabassum, S.K. Swami, S. Bishnoi, P. Vashishtha, G. Gupta, S.N. Sharma, A.K. Hafiz, Appl. Phys. A 126, 363 (2020)

    Article  ADS  Google Scholar 

  22. A. Hajjaji, K. Trabelsi, A. Atyaoui, M. Gaidi, L. Bousselmi, B. Bessais, M.A. El Khakani, Nanoscale Res. Lett. 9, 543 (2014)

    Article  Google Scholar 

  23. K.A. Rahman, T. Bak, A. Atanacio, M. Ionescu, J. Nowotny, Springer-Verlag GmbH, Springer Nature, Published online, https://doi.org/10.1007/s11581-017-2370-9 (2017)

  24. B. Santara, K. Imakita, M. Fujii, P.K. Giri, J. Alloys & Comp. 661, 331 (2016)

    Article  Google Scholar 

  25. H.A. Kuska, M.T. Rogers, ESR of First Row Transition Metal Complex Ions (Wiley, New York, 1968)

    Google Scholar 

  26. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics (Harper & Row, New York, 1967)

    Google Scholar 

  27. S.A. Al’tshuler, B.M. Kozyrev, E. P. R. of Compounds of Intermediate Group Elements (Nauka, Moscow, 1972) [in Russian]

  28. H.J. Gerritsen, S.E. Harrison, H.R. Lewis, J. Appl. Phys. 31, 1566 (1960)

    Article  ADS  Google Scholar 

  29. H.J. Gerritsen, in: Paramagnetic Resonance, Proc. 1-st Intern. Conf., W. Low (ed.) (Academic Press, New York, 1963). Vol. I, pp. 3–12.

  30. T.I. Barry, Solid State Comm. 4, 123 (1966)

    Article  ADS  Google Scholar 

  31. V.S. Grunin, G.D. Davtyan, V.A. Ioffe, I.B. Patrina, Solid State Phys. 17, 2174 (1975). (in Russian)

    Google Scholar 

  32. S. Doeuff, M. Henry, C. Sanchez, J. Livage, J. Non-Crystal, Solids 89, 84 (1987)

    Google Scholar 

  33. A. Amorelli, J.C. Evans, C.C. Roulands, J. Chem. Soc., Faraday Trans. 1 85, 4031 (1989)

  34. J.C. Evans, C.R. Owen, C.C. Rowlands, J. Chem. Soc., Faraday Trans. 1 85, 4039 (1989)

  35. I.S. Pentegov, E.A. Konstantinova, Phys. Stat. Solidi 8, 1954 (2011)

    Google Scholar 

  36. F. Amano, M. Nakata, J.J.M. Vequizo, A. Yamakata, A.C.S. Appl, Energy Mater. 2, 3274 (2019)

    Google Scholar 

  37. F. La Mattina, J.G. Bednorz, S.F. Alvarado, A. Shengelaya, K.A. Müller, H. Keller, Phys. Rev. B 80, 075122 (2009)

  38. A.Kh. Vorob’ev, N.A. Chumakova, in Nitroxides: Theory, Experiment and Applications, A.I. Kokorin (ed.) (InTech Publ., Rijeka, 2012), pp. 57–112

  39. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarenton press, Oxford, 1970)

    Google Scholar 

  40. G. Belford, R.L. Belford, J.F. Burkhaven, J. Magn. Reson. 11, 251 (1973)

    ADS  Google Scholar 

  41. V.V. Antufiev, Ya.V. Vasil’ev, M.P. Votinov, O.K. Kharitonova, E.V. Kharitonov, Solid State Phys., 4, 1496 (1962) (in Russian)

  42. P.C. Gravelle, F. Juillet, P. Mériaudeau, S.J. Teichner, Faraday Discus. Chem. Soc., No. 52, 140 (1971)

  43. A.I. Kokorin, in Chemical Physics of Nanostructured Semiconductors, A.I. Kokorin, D.W. Bahnemann (eds.) (VSP–Brill Acad. Publ., Utrecht, Boston, 2003) p. 203–261.

  44. Y.S. Lebedev, V.I. Muromtsev, EPR and Relaxation of the Stabilized Radicals (Khimiya, Moscow, 1971). (in Russin)

    Google Scholar 

  45. X. Chen, S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  46. N. Laidani, P. Cheyssac, J. Perriere, J. Phys. D: Appl. Phys. 43, 485402 (2010)

  47. W. Wedland, H. Hecht, Reflectance Spectroscopy (Interscience, New York, 1966)

    Google Scholar 

  48. E.A. Konstantinova, A.A. Minnekhanov, A.I. Kokorin, T.V. Sviridova, D.V. Sviridov, J. Phys. Chem. C 122, 10248 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The experiments were performed using the facilities of the Collective Use Center at the Moscow State University. This study was partially supported by the State assignment of Russian Federation № AAAA20-120021390044-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Konstantinova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.A., Ugolkova, E.A., Zaitsev, V.B. et al. Structure and Properties of Polycrystalline TiO2-Doped with Chromium Ions Studied by EPR and Optical Methods. Appl Magn Reson 53, 717–730 (2022). https://doi.org/10.1007/s00723-021-01396-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01396-1

Navigation