Skip to main content
Log in

Short-Time Dynamics of Radical-Ion Pairs Produced by Photoinduced Electron Transfer in Solution: The Magnetic Field Effect

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Kinetics of radical-ion pairs (RIPs) formed by photoinduced electron transfer in solution, as well as triplet and singlet products of their recombination, are studied within a general theory of spin-selective charge transfer assisted by diffusion of reactants in solution. The RIPs are assumed to be created in the singlet state, and their coherent singlet–triplet evolution is described in terms of isotropic hyperfine interaction (HFI) and \(\Delta g\) mechanisms. A set of quantum-classical model equations is solved numerically using the time propagator splitting technique. Numerical simulations are carried out on a prototype photochemical reaction involving bimolecular electron transfer between 9,10-dimethylanthracene (DMeA) and phthalonitrile (PN) in acetonitrile (ACN) solution. Time-dependent populations of all electronic and spin states, as well as spatial distributions of reactants in the course of forward and backward charge transfer are calculated and analysed. Particularly, spatial profiles of charge recombination (CR) in singlet and triplet RIPs are shown to differ significantly, with a significant part of the singlet RIPs undergoing distant (non-contact) recombination. The effect of a strong (saturating) magnetic field on the triplet CR product yield in these reactions is studied. For the HFI-induced coherent spin transitions, the time-dependent magnetic field effect is shown to decrease with time. A phenomenon of suppressing the triplet CR product yield in RIPs with the HFI- and \(\Delta g\)-induced coherent spin transitions in moderate magnetic fields is investigated and its physical origins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, Spin Polarization and Magnetic Effects in Radical Reactions Akademian Kiado (Budapest) (Elsevier, Amsterdam, 1984)

    Google Scholar 

  2. A. Weller, Pure Appl. Chem. 54, 1885 (1982). https://doi.org/10.1351/pac198254101885

    Article  Google Scholar 

  3. I.R. Gould, S. Farid, Acc. Chem. Res 29, 522 (1996). https://doi.org/10.1021/ar950053z

    Article  Google Scholar 

  4. N. Mataga, H. Miyasaka, Adv. Chem. Phys. 107, 431 (1999). https://doi.org/10.1002/9780470141663.ch8

    Article  Google Scholar 

  5. A. Rosspeintner, E. Vauthey, Phys. Chem. Chem. Phys. 16, 25741 (2014). https://doi.org/10.1039/C4CP03862B

    Article  Google Scholar 

  6. K. Schulten, H. Staekand, A. Weller, H.J. Werner, B.Z. Nickel, Z. Phys. Chem. 101, 371 (1976). https://doi.org/10.1524/zpch.1976.101.1-6.371

    Article  Google Scholar 

  7. Z. Schulten, K. Schulten, J. Chem. Phys. 66, 4616 (1977). https://doi.org/10.1063/1.433719

    Article  ADS  Google Scholar 

  8. A. Weller, H. Staerk, R. Treichel, Faraday Discuss. Chem. Soc. 78, 271 (1984). https://doi.org/10.1039/DC9847800271

    Article  Google Scholar 

  9. M. Ottolenghi, Acc. Chem. Res. 6, 153 (1973). https://doi.org/10.1021/ar50065a002

    Article  Google Scholar 

  10. M.E. Michel-Beyerle, R. Haberkorn, W. Bube, E. Steffens, H. Schroeder, H.J. Neusser, E.W. Schlag, H. Seidlitz, Chem. Phys. 17, 139 (1976). https://doi.org/10.1016/0301-0104(76)80097-3

    Article  Google Scholar 

  11. B. Brocklehurst, J. Chem. Soc. Faraday Trans. 72, 1869 (1976). https://doi.org/10.1039/F29767201869

    Article  Google Scholar 

  12. H.J. Werner, H. Staerk, A. Weller, J. Chem. Phys. 68, 2419 (1978). https://doi.org/10.1063/1.436013

    Article  ADS  Google Scholar 

  13. A.A. Neufeld, A.I. Burshtein, G. Angulo, G. Grampp, J. Chem. Phys. 116, 2472 (2002). https://doi.org/10.1063/1.1433746

    Article  ADS  Google Scholar 

  14. G. Angulo, G. Grampp, A.A. Neufeld, A.I. Burshtein, J. Phys. Chem. A 107, 6913 (2003). https://doi.org/10.1021/jp0342475

    Article  Google Scholar 

  15. V.S. Gladkikh, A.I. Burshtein, G. Angulo, G. Grampp, Phys. Chem. Chem. Phys. 5, 2581 (2003). https://doi.org/10.1039/B301009K

    Article  Google Scholar 

  16. K.M. Salikhov, Chem. Phys. 82, 145 (1983). https://doi.org/10.1016/0301-0104(83)85353-1

    Article  Google Scholar 

  17. D.V. Dodin, A.I. Ivanov, A.I. Burshtein, J. Phys. Chem. A 112, 889 (2008). https://doi.org/10.1021/jp077725a

    Article  Google Scholar 

  18. A.I. Ivanov, A.I. Burshtein, J. Phys. Chem. A 112, 6392 (2008). https://doi.org/10.1021/jp800008n

    Article  Google Scholar 

  19. D.V. Dodin, A.I. Ivanov, A.I. Burshtein, J. Chem. Phys. 138, 124102 (2013). https://doi.org/10.1063/1.4795576

    Article  ADS  Google Scholar 

  20. A.I. Burshtein, A.I. Ivanov, J. Chem. Phys. 141(2), 024508 (2014)

    Article  ADS  Google Scholar 

  21. S.V. Feskov, M.V. Rogozina, A.I. Ivanov, A. Aster, M. Koch, E. Vauthey, J. Chem. Phys. 150(2), 024501 (2019)

    Article  ADS  Google Scholar 

  22. K. Möbius, W. Lubitz, A. Savitsky, Appl. Magn. Reson. 41(2), 113 (2011). https://doi.org/10.1007/s00723-011-0284-7

    Article  Google Scholar 

  23. U.E. Steiner, T. Ulrich, Chem. Rev. 89, 51 (1989). https://doi.org/10.1021/cr00091a003

    Article  Google Scholar 

  24. A.I. Burshtein, Chem. Phys. Lett. 194, 247 (1992). https://doi.org/10.1016/0009-2614(92)85542-I

    Article  ADS  Google Scholar 

  25. R.C. Dorfman, M.D. Fayer, J. Chem. Phys. 96, 7410 (1992). https://doi.org/10.1063/1.462391

    Article  ADS  Google Scholar 

  26. A.I. Burshtein, Adv. Chem. Phys. 114, 419 (2000). https://doi.org/10.1002/9780470141731.ch6

    Article  Google Scholar 

  27. A. Rosspeintner, D.R. Kattnig, G. Angulo, S. Landgraf, G. Grampp, A. Cuetos, Chem. Eur. J. 13(22), 6474 (2007). https://doi.org/10.1002/chem.200700106

    Article  Google Scholar 

  28. S.V. Feskov, A.I. Burshtein, J. Phys. Chem. A 113(48), 13528 (2009). https://doi.org/10.1021/jp901863t

    Article  Google Scholar 

  29. G. Angulo, A. Rosspeintner, B. Lang, E. Vauthey, Phys. Chem. Chem. Phys. 20(39), 25531 (2018). https://doi.org/10.1039/C8CP05153D

    Article  Google Scholar 

  30. A. Reymond, G.K. Fraenkel, J. Phys. Chem. 71, 4570 (1967). https://doi.org/10.1021/j100872a076

    Article  Google Scholar 

  31. I.C. Lewis, L.S. Singer, J. Chem. Phys. 43, 2712 (1965). https://doi.org/10.1063/1.1697200

    Article  ADS  Google Scholar 

  32. N.N. Lukzen, J.B. Pedersen, A.I. Burshtein, J. Phys. Chem. A 109, 11914 (2005). https://doi.org/10.1021/jp053539y

    Article  Google Scholar 

  33. N. Korst, A. Lazarev, Physica 42(1), 31 (1969). https://doi.org/10.1016/0031-8914(69)90085-8

    Article  ADS  Google Scholar 

  34. J.B. Pedersen, J.H. Freed, J. Chem. Phys. 58(7), 2746 (1973). https://doi.org/10.1063/1.1679576

    Article  ADS  Google Scholar 

  35. J.B. Pedersen, J.H. Freed, J. Chem. Phys. 59(6), 2869 (1973). https://doi.org/10.1063/1.1680418

    Article  ADS  Google Scholar 

  36. A.A. Kornyshev, J. Ulstrup, Chem. Phys. Lett. 126, 74 (1986). https://doi.org/10.1016/0009-2614(86)85119-3

    Article  ADS  Google Scholar 

  37. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985). https://doi.org/10.1016/0304-4173(85)90014-X

    Article  Google Scholar 

  38. K. Huang, A. Rhys, Proc. R. Soc. A 204, 406 (1950). https://doi.org/10.1098/rspa.1950.0184

    Article  ADS  Google Scholar 

  39. S.V. Feskov, Math. Phys. Comput. Simul. 24(1), 50 (2021). https://doi.org/10.15688/mpcm.jvolsu.2021.1.4

    Article  MathSciNet  Google Scholar 

  40. M. Koch, G. Licari, E. Vauthey, J. Phys. Chem. B 119, 11846 (2015). https://doi.org/10.1021/acs.jpcb.5b07663

    Article  Google Scholar 

  41. E. Pines, D. Huppert, N. Agmon, J. Chem. Phys. 88, 5620 (1988). https://doi.org/10.1063/1.454572

    Article  ADS  Google Scholar 

  42. A.I. Burshtein, Adv. Chem. Phys. 129, 105 (2004). https://doi.org/10.1002/047168077X.ch3

    Article  Google Scholar 

  43. F. Etzold, I. Howard, N. Forler, A. Melnyk, D. Andrienko, M. Hansen, F. Laquai, Energy Environ. Sci. 8, 1511 (2015). https://doi.org/10.1039/C4EE03630A

    Article  Google Scholar 

  44. R.M. Williams, H.C. Chen, D.D. Nuzzo, S.C.J. Meskers, R.A.J. Janssen, J. Spectrosc. 2017, 1 (2017). https://doi.org/10.1155/2017/6867507

    Article  Google Scholar 

  45. E.M. Espinoza, D. Bao, M. Krzeszewski, D.T. Gryko, V.I. Vullev, Int. J. Chem. Kinet. 51(9), 657 (2019). https://doi.org/10.1002/kin.21285

    Article  Google Scholar 

Download references

Funding

The work is supported by the Russian Foundation for Basic Research (project No. 19-03-00175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly I. Ivanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feskov, S.V., Ivanov, A.I. Short-Time Dynamics of Radical-Ion Pairs Produced by Photoinduced Electron Transfer in Solution: The Magnetic Field Effect. Appl Magn Reson 53, 745–761 (2022). https://doi.org/10.1007/s00723-021-01388-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01388-1

Navigation