Skip to main content
Log in

In Vivo CW-EPR Spectrometer Systems for Dosimetry and Oximetry in Preclinical and Clinical Applications

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

EPR spectrometers (and various sub-systems) have been designed and constructed to facilitate in vivo measurements with human subjects for dosimetry and oximetry. Most applications are primarily focused on surface tissue measurements; however, oximetric measurements utilizing implantable devices are also discussed. Given various specifications and considerations across these two primary applications, several embodiments and configurations of the associated sub-systems to the spectrometer have been realized and implemented. These embodiments and configurations have been developed and tested with a focus on the end-use and the end-users. This includes acknowledgement of the challenges and needs for making measurements in unanesthetized human patients, the nature of the data that are most likely to be useful for clinical decision-making, and the person who will be making the actual measurements. Significant developments in spectrometer automation and features to ensure the quality of recorded data are featured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code Availability

Inquiries regarding software may be made to the corresponding author.

References

  1. H.M. Swartz, B.B. Williams, B.I. Zaki, A.C. Hartford, L.A. Jarvis, E. Chen, R.J. Comi, M.S. Ernstoff, H. Hou, N. Khan, S.G. Swarts, A.B. Flood, P. Kuppusamy, Acad. Radiol. 21(2), 197 (2014)

    Article  Google Scholar 

  2. H.M. Swartz, J. Bolton, D. Borg, Biological Applications of Electron Spin Resonance (John Wiley & Sons, New York, 1972)

    Google Scholar 

  3. H.M. Swartz, S. Ambegaonkar, W. Antholine, M. Konieczny, C. Mailer, Ann NY Acad Sci. 222, 989 (1973)

    Article  ADS  Google Scholar 

  4. T. Walczak, P. Leśniewski, I. Salikhov, A. Sucheta, K. Szybiński, H.M. Swartz, Rev. Sci. Instr. 76(1), 013107 (2005)

    Article  ADS  Google Scholar 

  5. I. Salikhov, T. Walczak, P. Leśniewski, N. Khan, A. Iwasaki, R. Comi, J. Buckey, H.M. Swartz, Magn. Reson. Med. 54, 1317 (2005)

    Article  Google Scholar 

  6. B.B. Williams, A. Sucheta, R. Dong, Y. Sakata, A. Iwasaki, G. Burke, O. Grinberg, P. Leśniewski, M. Kmiec, H.M. Swartz, Radiat. Meas. 42, 1094 (2007)

    Article  Google Scholar 

  7. B.B. Williams, R. Dong, A.B. Flood, O. Grinberg, M. Kmiec, P.N. Leśniewskii, T.P. Matthews, R.J. Nicolalde, T. Raynolds, I. Salikhov, H.M. Swartz, Radiat. Meas. 46(9), 772 (2011)

    Article  Google Scholar 

  8. B.B. Williams, A. Sucheta, R. Dong, Y. Sakata, A. Iwasaki, G. Burke, O. Grinberg, P. Leśniewski, M. Kmiec, H.M. Swartz, Radiat. Meas. 42(6), 1094 (2007)

    Article  Google Scholar 

  9. A.B. Flood, V.A. Wood, W. Schreiber, B.B. Williams, B. Gallez, H.M. Swartz, Adv. Exp. Med. Biol. 1072, 233 (2018)

    Article  Google Scholar 

  10. S. Petryakov, A. Samouilov, M. Chzhan-Roytenberg, M.E. Kesselring, Z. Sun, J.L. Zweier, J. Magn. Reson. 198(1), 8 (2009)

    Article  ADS  Google Scholar 

  11. R.M. Caston, W. Schreiber, H. Hou, B.B. Williams, E.Y. Chen, P.E. Schaner, L.A. Jarvis, A.B. Flood, S.V. Petryakov, M.M. Kmiec, P. Kuppusamy, H.M. Swartz, Cell Biochem. Biophys. 75(3–4), 275 (2017)

    Article  Google Scholar 

  12. I. Salikhov, H. Hirata, T. Walczak, H.M. Swartz, J. Magn. Reson. 164(1), 54 (2003)

    Article  ADS  Google Scholar 

  13. H. Hirata, S. Petryakov, W. Schreiber, in: Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34, Berliner L., Parinandi N. (eds) (Springer, Cham, 2020), p. 189

  14. H. Hirata, T. Walczak, H.M. Swartz, J. Magnet. Reson. 142(1), 159 (2000)

    Article  ADS  Google Scholar 

  15. H. Sugawara, H. Hirata, S. Petryakov, P. Leśniewski, B.B. Williams, A.B. Flood, H.M. Swartz, IEEE Transact Biomed Eng. 61(6), 1894 (2014)

    Article  Google Scholar 

  16. J.J. Jeong, T. Liu, X. Yang, M. Torres, J. Lin, W. Schreiber, A.B. Flood, P. Kuppusamy, H.M. Swartz, B.B. Williams, P.E. Schaner, A. Ali, J. Radiol. Radiat. Ther. 7(1), 1082 (2019)

    Google Scholar 

  17. H.M. Swartz, B.B. Williams, H. Hou, N. Khan, L.A. Jarvis, E.Y. Chen, P.E. Schaner, A. Ali, B. Gallez, P. Kuppusamy, A.B. Flood, Adv. Exp. Med. Biol. 923, 95 (2016)

    Article  Google Scholar 

  18. P.E. Schaner, J.R. Pettus, A.B. Flood, B.B. Williams, L.A. Jarvis, E.Y. Chen, D.A. Pastel, R.A. Zuurbier, R.M. diFlorio-Alexander, H.M. Swartz, P. Kuppusamy, Front Oncol. 10, 572060 (2020)

    Article  Google Scholar 

  19. B.B. Williams, R. Dong, R.J. Nicolalde, T.P. Matthews, D.J. Gladstone, E. Demidenko, B.I. Zaki, I.K. Salikhov, P.N. Leśniewski, H.M. Swartz, Internat J Radiati Biol. 87(8), 766 (2011)

    Article  Google Scholar 

  20. B.B. Williams, N. Khan, B. Zaki, A. Hartford, M.S. Ernstoff, H.S. Swartz, Adv. Exp. Med. Biol. 662, 149 (2010)

    Article  Google Scholar 

  21. N. Khan, B.B. Williams, H. Hou, H. Li, H.M. Swartz, Antioxid. Redox Signal 9(8), 1169 (2007)

    Article  Google Scholar 

  22. N. Khan, B.B. Williams, H.M. Swartz, Appl. Magn. Reson. 30, 185–199 (2006)

    Article  Google Scholar 

  23. H.M. Swartz, B.B. Williams, B.I. Zaki, A.C. Hartford, L.A. Jarvis, E.Y. Chen, R.J. Comi, M.S. Ernstoff, H. Hou, N. Khan, S.G. Swarts, A.B. Flood, P. Kuppusamy, Aca. Radiol 21, 197 (2014)

    Article  Google Scholar 

  24. B.B. Williams, A.B. Flood, I. Salikhov, K. Kobayashi, R. Dong, K. Rychert, G. Du, W. Schreiber, H.M. Swartz, Environ. Biophys. 53(2), 335 (2014)

    Article  Google Scholar 

  25. W. Schreiber, S. Petryakov, M. Kmiec, N. Feldman, P. Meaney, V.A. Wood, H.K. Boyle, A.B. Flood, B.B. Williams, H.M. Swartz, Radiat. Protect. Dos. 172(2), 87 (2016)

    Article  Google Scholar 

  26. I. Koren, F. Demmerle, R. May, M. Kaibel, S. Sattler, 12th IEEE European Test Sympos. (ETS'07, Freiburg, 2007) p 43

  27. A. Lukindo, LabVIEW queued state machine architecture. (LabVIEW and Visual Object-Oriented Programming Blog Community, 2007)

  28. B.H. Robinson, C. Mailer, A.W. Reese, J. Magn. Reson. 138(2), 199 (1999)

    Article  ADS  Google Scholar 

  29. C. Mailer, B.H. Robinson, B.B. Williams, H.J. Halpern, Magn. Reson. Med. 49, 1175 (2003)

    Article  Google Scholar 

  30. J. Palmer, L.C. Potter, R. Ahmad, J. Magn. Reson. 209, 337 (2010)

    Article  ADS  Google Scholar 

  31. R. Czoch, A. Francik, Instrumental Effects in Homodyne Electron Paramagnetic Resonance Spectrometers (Halsted Press, Warsaw, 1989)

    Google Scholar 

  32. National Aeronautics and Space Administration (NASA). Anthropometry and Biomechanics. (NASA, Washington, 2018)

  33. K.J. Liu, P. Gast, M. Moussavi, S.W. Norby, N. Vahidi, T. Walczak, M. Wu, H.M. Swartz, Proc. Natl. Acad. Sci. 90, 5438 (1993)

    Article  ADS  Google Scholar 

  34. N. Khan, H. Hou, P. Hein, R.J. Comi, J.C. Buckey, O. Grinberg, I. Salikhov, S.Y. Lu, H. Wallach, H.M. Swartz, Adv. Exp. Med. Biol. 566, 119–126 (2005)

    Article  Google Scholar 

  35. H.M. Swartz, K.J. Liu, F. Goda, T. Walczak, Magn. Reson. Med. 31, 229–232 (1994)

    Article  Google Scholar 

  36. N. Charlier, N. Beghein, B. Gallez, NMR Biomed. 17(5), 303 (2004)

    Article  Google Scholar 

  37. A.B. Flood, B.B. Williams, W. Schreiber, G. Du, V.A. Wood, M.M. Kmiec, S.V. Petryakov, E. Demidenko, H.M. Swartz, Radiat. Protect. Dos. 172, 72 (2016)

    Article  Google Scholar 

  38. H.M. Swartz, A.B. Flood, B.B. Williams, R. Dong, S.G. Swarts, X. He, O. Grinberg, J. Sidabras, E. Demidenko, J. Gui, D.J. Gladstone, L.A. Jarvis, M.M. Kmiec, K. Kobayashi, P.N. Lesniewski, S.D. Marsh, T.P. Matthews, R.J. Nicolalde, P.M. Pennington, T. Raynolds, I. Salikhov, D.E. Wilcox, B.I. Zaki, Health Phys. 103(3), 255 (2012)

    Article  Google Scholar 

  39. M. Miyake, Y. Nakai, I. Yamaguchi, H. Hirata, N. Kunugita, B.B. Williams, H.M. Swartz, Radiat. Prot. Dosim, 172 (1–3): 248 (2016)

  40. US National Security Staff. Interagency Policy Coordination Subcommittee for Preparedness and Response to Radiological and Nuclear Events. Planning Guidance for Reaction to a Nuclear Detonation, 2nd edn. (US Government, Washington DC, 2010)

  41. P. Fattibene, F. Callens Appl Radiat. Isot. 68(11), 2033 (2010)

    Article  Google Scholar 

  42. H.M. Swartz, Radiat. Prot. Dos. 172, 3 (2016)

    Article  Google Scholar 

  43. J.D. Pollock, B.B. Williams, J.W. Sidabras, O. Grinberg, I. Salikhov, P. Leśniewski, M. Kmiec, H.M. Swartz, Health Phys. 98(2), 339 (2010)

    Article  Google Scholar 

  44. K.A. Rubinson, in: In Vivo EPR (ESR). Biological Magnetic Resonance, vol 18, L.J. Berliner (eds) (Springer, Boston 2003), p.73

  45. H. Hirata, T. Walczak, H.M. Swartz, J. Magn. Reson. 142(1), 159 (2000)

    Article  ADS  Google Scholar 

  46. H. Hirata, G. He, Y. Deng, I. Salikhov, S. Petryakov, J.L. Zweier, J. Magn. Reson. 190(1), 124 (2007)

    Article  ADS  Google Scholar 

  47. H. Salikhov, I. Hirata, H. Walczak, T. Swartz, An improved external loop resonator for in vivo L-band EPR spectroscopy. J Magn Reson 164(1), 54–59 (2003)

    Article  ADS  Google Scholar 

  48. S. Petryakov, A. Samouilov, M. Chzhan-Roytenberg, E. Kesselring, Z. Sun, J.L. Zweier, J. Magn. Reson 198(1), 8 (2009)

    Article  ADS  Google Scholar 

  49. A. Sotgiu, J. Magn. Reson. 65(2), 206 (1969)

    ADS  Google Scholar 

  50. M. Chzhan, P. Kuppusamy, J.P. Zweier, J. Magn. Reson. 108(1), 67 (1995)

    Article  Google Scholar 

  51. J.S. Hyde, W. Froncisz, in Advanced EPR: Applications in Biology and Biochemistry, A.J. Hoff (ed) (Elsevier Science: Amsterdam, 1989), p 277

  52. A.T. Mobashsher, A.M. Abbosh, IEEE Microwave Mag. 16(6), 42 (2015)

    Article  Google Scholar 

  53. S. Lazebnik, M. Madsen, E. Frank, G. Hagness, Phys Med Biol. 50(18), 4245 (2005)

    Article  Google Scholar 

  54. A. Robinson, M. Richardson, M. Green, J. Preece, Phys Med Biol 36(12), 1565 (1991)

    Article  Google Scholar 

  55. S. Petryakov, W. Schreiber, M. Kmiec, B. Williams. Flexible, Segmented Surface Coil Resonator for in vivo EPR oximetry. Appl Magn Reson (2021)

  56. F. Wojciech, J.S. Hyde, J. Magn. Reson. 47(3), 515 (1982)

    Google Scholar 

  57. H. Li, H. Hou, A. Sucheta, B.B. Williams, J.P. Lariviere, N. Khan, P.N. Leśniewski, B. Gallez, H.M. Swartz, Adv. Exp. Med. Biol. 662, 265 (2010)

    Article  Google Scholar 

  58. K. Kobayashi, R. Dong, R.J. Nicolalde, P. Calderon, G. Du, B.B. Williams, L. Masaichi-Chang-Il, H.M. Swartz, A.B. Flood, Phys Med Biol. 63(16), 165002 (2018)

    Article  Google Scholar 

  59. P. Meaney, B. Williams, S. Geimer, A. Flood, H. Swartz, Adv. Biomed. Eng. Res. 3, 8 (2015)

    Article  Google Scholar 

  60. A.B. Flood, B.B. Williams, W. Schreiber, G. Du, V.A. Wood, M.M. Kmiec, S.V. Petryakov, E. Demidenko, H.M. Swartz & Members of the EPR Center Tooth Dosimetry Project Team, Radiat Prot Dosim. 172(1–3), 72 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Piotr Leśniewski (deceased) and Tadeuz Walczak (deceased) were instrumental (literally and figuratively) in the concept, design, development, understanding, and overall success of the in vivo EPR developments described herein. For other contributors to this work, particularly the members of the EPR Center for the Study of Viable Systems at Dartmouth, see the Editorial in this issue.

Funding

United States Dept. of Defense: HR0011-08-C-0022 & -0023 (Defense Advanced Research Projects Agency- DARPA) United States Health and Human Services Biomedical Advanced Research and Development Authority (BARDA) HHSO100201100024C (BARDA). National Institutes of Health: U19 AI091173 (Dartmouth Physically Based Biodosimetry Center for Medical Countermeasures against Radiation (Dart-Dose CMCR) and Project at prior U19 CMCR at Rochester University) P01 CA190193, R21 CA121593, R21 DK072112, R21 CA118069, R01 CA120919, P41 EB002032 (Facilities of The EPR Center). Dartmouth College and Dartmouth-Hitchcock Medical Center, Hanover & Lebanon, NH Norris Cotton Cancer Center: ACS Institutional Research Grants and Prouty grants Dartmouth Center for Clinical and Translational Science (DCCTS) Dept. of Radiology; Dept. of Medicine: Section of Radiation Oncology Other: Clin-EPR, LLC, Lyme NH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin B. Williams.

Ethics declarations

Conflict of Interests

Harold Swartz and Ann Flood are co-owners of Clin-EPR, LLC which manufactures clinical and preclinical EPR spectrometers for investigational use only. No other authors declare a conflict of interest.

Ethics Approval/Consent to Participate

Although no preclinical or clinical studies using this equipment are reported here, all studies using animals or human subjects had been approved by the appropriate Institutional Research Boards (IRB) or Institutional Animal Care and Use Committees (IACUC) where the studies were conducted. All human subjects gave written informed consent to participate. All IRBs where the EPR spectroscopy devices were used in studies determined that they were non-significant risk devices and therefore do not require an Institutional Device Exemption (IDE) from the Food and Drug Administration. Some implanted oxygen sensors were required to have an IDE prior to first use in humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, W., Petryakov, S.V., Kmiec, M.M. et al. In Vivo CW-EPR Spectrometer Systems for Dosimetry and Oximetry in Preclinical and Clinical Applications. Appl Magn Reson 53, 123–143 (2022). https://doi.org/10.1007/s00723-021-01382-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01382-7

Navigation