Skip to main content
Log in

An Aptamer-functionalized Magnetic Relaxation Switch Sensor for the Rapid Detection of Vibrio alginolyticus in Water

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A sensitive and rapid method for the detection of Vibrio alginolyticus is always in high demand. In this research, a magnetic relaxation switch sensor for the rapid detection of Vibrio alginolyticus has been successfully developed based on the aptamer-functionalized magnetic nanoparticle. The optimal concentration of aptamer for cross-linking was 6 μM, and the coupling time was 7 h. The optimal detection conditions were as follows: the concentration of Fe3O4@SiO2-AptVA was 0.06 mg/mL, the incubation time was 10 min and the detection could be completed within 15 min. Meanwhile, the dependence of bacteria concentration on different relaxation characteristic signals was compared, and it was clear that ΔT2w exhibited better correlationship. In addition, the maximum NaCl limit for nanoparticles to remain stable is 0.4% (w/w). Under the optimal conditions, the LOD of this method based on ΔT2w is 26 CFU/mL and the recovery is 91.30–113.09%. Good specificity was proved. This method provides new choice for the rapid detection of Vibrio alginolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Chen, C. Kang, N. Rong, N. Wu, C. Chen, S. Wu, X. Zhang, X. Liu, Iran. J. Biotechnol. 17, 35 (2019)

    Article  ADS  Google Scholar 

  2. C. Baker-Austin, J.D. Oliver, M. Alam, A. Ali, M.K. Waldor, F. Qadri, J. Martinez-Urtaza, Nat. Rev. Dis. Prim. 4(1), 1–9 (2018)

    Article  Google Scholar 

  3. M.R. Kriem, B. Banni, H. El Bouchtaoui, A. Hamama, A. El Marrakchi, N. Chaouqy, A. Robert-Pillot, M.L. Quilici, Lett. Appl. Microbiol. 61, 224 (2015)

    Article  Google Scholar 

  4. Y. Liu, J. Hu, J.S. Sun, Y. Li, S.X. Xue, X.Q. Chen, X.S. Li, G.X. Du, Talanta 128, 311 (2014)

    Article  Google Scholar 

  5. S. Zhou, Z. Hou, N. Li, Q. Qin, J. Appl. Microbiol. 103, 1897 (2007)

    Article  Google Scholar 

  6. B.C.J. De Silva, S. Hossain, P.S. Dahanayake, M. De Zoysa, G.J. Heo, J. Food Saf. 202(3), 501–509 (2018)

    Google Scholar 

  7. Y. Dong, P. Zhao, L. Chen, H. Wu, X. Si, X. Shen, H. Shen, Y. Qiao, S. Zhu, Q. Chen, W. Jia, J. Dong, J. Li, S. Gao, B.M.C. Vet, Res. 16, 1 (2020)

    Google Scholar 

  8. G. Gu, X. Wang, H. Zhou, B. Liu, Chinese J. Anal. Chem. 46, 1161 (2018)

    Article  Google Scholar 

  9. J.Y. Wang, Q.Y. Guo, Z.Y. Yao, N. Yin, S.Y. Ren, Y. Li, S. Li, Y. Peng, J.L. Bai, B.A. Ning, J. Liang, Z.X. Gao, Microchim. Acta 187, 1 (2020)

    Article  Google Scholar 

  10. Y. Hu, X. Guo, H. Wang, Q. Luo, Y. Song, E. Song, A.C.S. Appl, Bio Mater. 3, 2651 (2020)

    Google Scholar 

  11. J. Shen, Y. Zhang, H. Yang, Y. Yang, Z. Zhou, S. Yang, Sensors Actuators. B Chem. 203, 477 (2014)

    Google Scholar 

  12. D. Alcantara, S. Lopez, M.L. García-Martin, D. Pozo, Nanomedicine nanotechnology. Biol. Med. 12, 1253 (2016)

    Google Scholar 

  13. I. Koh, R. Hong, R. Weissleder, L. Josephson, Anal. Chem. 81, 3618 (2009)

    Article  Google Scholar 

  14. S. Bamrungsap, M.I. Shukoor, T. Chen, K. Sefah, W. Tan, Anal Chem. 83, 7795 (2011)

    Article  Google Scholar 

  15. C. Kaittanis, S. Santra, O.J. Santiesteban, T.J. Henderson, J.M. Perez, J. Am. Chem. Soc. 133, 3668 (2011)

    Article  Google Scholar 

  16. J.M. Perez, F.J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, J. Am. Chem. Soc. 125, 10192 (2003)

    Article  Google Scholar 

  17. F. Jia, L. Xu, W. Yan, W. Wu, Q. Yu, X. Tian, R. Dai, X. Li, Microchim. Acta 184, 1539 (2017)

    Article  Google Scholar 

  18. Z. Xu, H. Kuang, W. Yan, C. Hao, C. Xing, X. Wu, L. Wang, C. Xu, Biosens. Bioelectron. 32, 183 (2012)

    Article  Google Scholar 

  19. J. Malakootikhah, A.H. Rezayan, B. Negahdari, S. Nasseri, H. Rastegar, Carbohydr. Polym. 170, 190 (2017)

    Article  Google Scholar 

  20. J. Baudry, C. Rouzeau, C. Goubault, C. Robic, L. Cohen-Tannoudji, A. Koenig, E. Bertrand, J. Bibette, Proc. Natl. Acad. Sci. USA 103, 16076 (2006)

    Article  ADS  Google Scholar 

  21. V. Demas, T.J. Lowery, New J. Phys. 13(2), 025005 (2011)

    Article  ADS  Google Scholar 

  22. C. Min, H. Shao, M. Liong, T.J. Yoon, R. Weissleder, H. Lee, ACS Nano 6, 6821 (2012)

    Article  Google Scholar 

  23. S.R. Yan, M.M. Foroughi, M. Safaei, S. Jahani, N. Ebrahimpour, F. Borhani, N. Rezaei, B. Zade, Z. Aramesh-Boroujeni, L.K. Foong, Int. J. Biol. Macromol. 155, 184 (2020)

    Article  Google Scholar 

  24. X. Tang, J. Zheng, Q. Yan, Z. Li, Y. Li, Biotechnol. Lett. 35, 909 (2013)

    Article  Google Scholar 

  25. Q. Yu, M. Liu, H. Su, H. Xiao, S. Wu, X. Qin, S. Li, H. Mi, Z. Lu, D. Shi, P. Li, J. Fish Dis. 42, 851 (2019)

    Article  Google Scholar 

  26. J. Zheng, X. Tang, R. Wu, Q. Yan, H. Tang, J. Luo, S. Niu, Y. Qu, L. Sun, LWT - Food Sci. Technol. 64, 1138 (2015)

    Article  Google Scholar 

  27. ISO 4833-1:2013(E) (2013)

  28. Y. Dong, B. Wen, Y. Chen, P. Cao, C. Zhang, RSC Adv. 6, 64434 (2016)

    Article  ADS  Google Scholar 

  29. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Article  ADS  Google Scholar 

  30. J.A. Howarter, J.P. Youngblood, Langmuir 22, 11142 (2006)

    Article  Google Scholar 

  31. H. Liu, Y. Luan, A. Lu, B. Li, M. Yang, J.H. Wang, Microchim. Acta 185(1), 1 (2018)

    Article  ADS  Google Scholar 

  32. X. Hou, G. Wang, G. Su, X. Wang, S. Nie, Food Chem. 280, 139 (2019)

    Article  Google Scholar 

  33. C.L. Hansen, A.K. Thybo, H.C. Bertram, N. Viereck, F. Van Den Berg, S.B. Engelsen, J. Agric. Food Chem. 58, 10300 (2010)

    Article  Google Scholar 

  34. F. Yang, J. Xu, J. Li, Y. Huang, Q. Lin, I.O.P. Conf, Ser. Earth Environ. Sci. 440(4), 042089 (2020)

    Google Scholar 

  35. D. Chicea, Optoelectron. Adv. Mater. Rapid Commun. 3, 1299 (2009)

    Google Scholar 

  36. M. Gupta, M. Sharma, Colloids interface. Sci. Commun. 37, 100299 (2020)

    Google Scholar 

  37. P.K. Jal, S. Patel, B.K. Mishra, Talanta 62, 1005 (2004)

    Article  Google Scholar 

  38. C. Barbé, J. Bartlett, L. Kong, K. Finnie, H.Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Adv. Mater. 16, 1959 (2004)

    Article  Google Scholar 

  39. S. Tao, W. Guanghui, L. Anhui, L. Wencui, Chem. Ind. Eng. Prog. 29, 1241 (2010)

    Google Scholar 

  40. W. Wang, P. Ma, H. Dong, H.J. Krause, Y. Zhang, D. Willbold, A. Offenhaeusser, Z. Gu, Biosens. Bioelectron. 80, 661 (2016)

    Article  Google Scholar 

  41. H. Pu, Z. Huang, D.W. Sun, X. Xie, W. Zhou, Water. Air. Soil Pollut. 230(6), 1–9 (2019)

    Article  Google Scholar 

  42. S. Lin, N. Gan, Y. Cao, Y. Chen, Q. Jiang, J. Chromatogr. A 1446, 34 (2016)

    Article  Google Scholar 

  43. S. Wang, R. Niu, Y. Yang, X. Zhou, S. Luo, C. Zhang, Y. Wang, Int. J. Biol. Macromol. 153, 583 (2020)

    Article  Google Scholar 

  44. P. Wang, Food Safety Detecting Technology (China Agricultural University Press, 2009)

    Google Scholar 

  45. Y. Zhao, Y. Yao, M. Xiao, Y. Chen, C.C.C. Lee, L. Zhang, K.X. Zhang, S. Yang, M. Gu, Food Control 34, 436 (2013)

    Article  Google Scholar 

  46. Y. Zhao, Y. Li, K. Jiang, J. Wang, W.L. White, S. Yang, J. Lu, Food Control 71, 110 (2017)

    Article  Google Scholar 

  47. H. Yan-Feng, W. Ya-Fan, Y. Xiu-Ping, Environ. Sci. Technol. 44, 7908 (2010)

    Article  ADS  Google Scholar 

  48. C. Wang, G. Su, X. Wang, S. Nie, J. Agric. Food Chem. 67, 2361 (2019)

    Article  Google Scholar 

  49. Y. Chen, M. Xie, RSC Adv. 5, 95401 (2015)

    Article  ADS  Google Scholar 

  50. Q. Yu, M. Liu, H. Xiao, S. Wu, X. Qin, K. Ke, S. Li, H. Mi, D. Shi, P. Li, J. Fish Dis. 42, 1523 (2019)

    Article  Google Scholar 

  51. K. Fu, J. Li, Y. Wang, J. Liu, H. Yan, L. Shi, L. Zhou, Front. Microbiol. 7, 651 (2016)

    Google Scholar 

  52. Y. Xu, L. Sun, Y. Wang, P. Chen, Z. Liu, Y. Li, L. Tang, Food Control 71, 64 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC China 81773482).

Author information

Authors and Affiliations

Authors

Contributions

XW: Writing—Review and Editing, Conceptualization, Supervision, Methodology, Resources, Project administration, Funding acquisition. SN: Writing—original draft, Methodology, Formal analysis, Validation. YW: Methodology, Formal analysis, Validation.

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1544 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ni, S. & Wang, Y. An Aptamer-functionalized Magnetic Relaxation Switch Sensor for the Rapid Detection of Vibrio alginolyticus in Water. Appl Magn Reson 52, 1561–1580 (2021). https://doi.org/10.1007/s00723-021-01378-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01378-3

Navigation