Skip to main content
Log in

Temperature Coefficient Optimization of the Physics Package of Rubidium Atomic Clock

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The vapor-cell rubidium atomic clock is widely used in Global Navigation Satellite System (GNSS) and telecommunications. The sensitivity of temperature is one of the most important factors affecting the performance of rubidium Atomic Frequency Standards (RAFS). It plays a significant role in the long-term frequency stability of the rubidium atomic clock, and largely depends on the Physics Package (PP). In this paper, we attempt to reduce the temperature sensitivity of RAFS in a specific environment of vacuum and extraterrestrial temperature. We achieve this by studying the theory of light shift, collision shift, and magnetic frequency shift in RAFS. By combining this with our engineering expertise, we have proposed a single method on three parameters to optimize the temperature coefficient of PP of the rubidium atomic clock, which can not only optimize the temperature coefficient of PP, but can also improve the long-term frequency stability of the rubidium atomic clock. Some related experiments, by the proposed method, further demonstrate a significant reduction in the temperature coefficient of PP, suggesting that the performance of RAFS can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Camparo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(7), 1075–1078 (2005). https://doi.org/10.1109/TUFFC.2005.1503993

    Article  Google Scholar 

  2. Q. Hao, W. Li, S. He et al., Rev. Sci. Instrum. 87(12), 123111 (2016). https://doi.org/10.1063/1.4972567

    Article  ADS  Google Scholar 

  3. E.N. Pestov, A.N. Besedina, D.E. Pestov et al., Appl. Magn. Reson. 51(2), 195–204 (2020)

    Article  Google Scholar 

  4. R. T. Dupuis, T. J. Lynch, J. R. Vaccaro, Frequency control symposium, 2008 ieee international. New York: IEEE; 2008

  5. J. C. Camparo, J. O. Hagerman, T. A. Mcclelland, European frequency & time forum (IEEE, New York, 2012)

  6. V. Formichella, J. Camparo, P. Tavella, 2017 precise time and time interval meeting (2017), pp. 291–298

  7. J.C. Camparo, S.C. Moss, S.D. Lalumondiere, IEEE Aerosp. Electron. Syst. Mag. 19(5), 3–8 (2004)

    Article  Google Scholar 

  8. J.C. Camparo, Phys. Today 60(11), 33–39 (2007)

    Article  Google Scholar 

  9. J.C. Camparo, R. Mackay, J. Appl. Phys. 101(5), 27–1022 (2007)

    Article  Google Scholar 

  10. W. J. Riley, The 13th precise time and time interval (PTTI) applications and planning meeting (1981), pp. 609–629

  11. W. Li, S. Kang, G. Ming, et al. China satellite navigation conference (CSNC) (2013)

  12. H. Feng, J.Z. Cui, J.H. Tu, Appl. Mech. Mater. 687–691, 3179–3182 (2014)

    Article  Google Scholar 

  13. W.E. Bell, A.L. Bloom, J. Lynch, Rev. Sci. Instrum. 32(6), 688–692 (1961)

    Article  ADS  Google Scholar 

  14. Brewer, G. Richard, Rev. Sci. Instrum. 32(12), 1356–1358 (1961)

    Article  ADS  Google Scholar 

  15. V.B. Gerard, J. Sci. Instrum. 39, 217–218 (1962)

    Article  ADS  Google Scholar 

  16. B. Ghosal, A. Banik, V. Vats et al., AIP Conf. Proc. 1391, 321 (2011)

    Article  ADS  Google Scholar 

  17. S. Singh, B. Ghosal, G. M. Saxena. Physics (2010)

  18. C.E. Calosso, A. Godone, F. Levi et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2646–2654 (2012)

    Article  Google Scholar 

  19. J. Vanier, M.W. Levine, D. Janssen et al., Phys. Rev. A 67(6), 103–111 (2003)

    Article  Google Scholar 

  20. L.L. Lewis, Proc. IEEE 79(7), 927–935 (1991). https://doi.org/10.1109/5.84969

    Article  ADS  Google Scholar 

  21. P.L. Bender, E.C. Beaty, A.R. Chi, Phys. Rev. Lett. 1(9), 311–313 (1958)

    Article  ADS  Google Scholar 

  22. G. Vecchi, A. De Marchi, IEEE Trans. Instrum. Meas. 42(2), 434–438 (2002)

    Article  Google Scholar 

  23. S. Kang, W. Li, P. Wang, et al. China satellite navigation conference (2012)

  24. Q. Hao, W. Xue, F. Xu et al., Satellite Navig. 1(1), 17 (2020)

    Article  Google Scholar 

  25. A. Dobrogowski, M. Kasznia, IEEE EFTF (2010). https://doi.org/10.1109/eftf.2010.6533709

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their deep gratitude to Dr. Evgeny N. Pestov (St. Petersburg, Russia) for an important discussion and helpful advice when reviewing the results of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhang, J., Wang, S. et al. Temperature Coefficient Optimization of the Physics Package of Rubidium Atomic Clock. Appl Magn Reson 52, 1187–1200 (2021). https://doi.org/10.1007/s00723-021-01370-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01370-x

Navigation