Skip to main content
Log in

Brain Oximetry and the Quest for Quantified Metabolic Rate: Applications Using MRI and Near-Infrared Spectroscopy

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Cerebral metabolic rate of oxygen (CMRO2) is a robust marker of brain health. It represents the amount of oxygen consumed by the brain, and it has been proved to be more sensitive indicator than oxygenation level and cerebral blood flow alone. Quantitative assessment of CMRO2 provides a useful insight into the viability of the brain tissue, the progression of a brain disease or action of a treatment. Therefore, there is a growing interest in developing methods that can quantify CMRO2, despite its complexity. Over the past years, many magnetic resonance imaging (MRI)-based methods and near-infrared spectroscopy (NIRS)-based methods have been developed for CMRO2 quantification. Here, we review the available approaches based on these two techniques, their advantages, and disadvantages. Examples of application of these approaches in animal models, neonates and adults under normal and different physiological conditions are provided. Physiological correlates such as cerebral blood flow, venous oxygen saturation and oxygen extraction fraction in addition to CMRO2 values found in the literature, are presented as well. We also show how the benefits of these two techniques can be combined to create a multimodal NIRS-MRI technique that can provide novel data, allowing better understanding of CMRO2 and oxidative metabolism in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Hoffmann, P. Begovatz, A.M. Nagel, R. Umathum, K. Schommer, P. Bachert, M. Bock, A measurement setup for direct 17O MRI at 7 T. Magn. Reson. Med. 66(4), 1109–1115 (2011)

    Article  Google Scholar 

  2. W. Cui, X.-H. Zhu, M.L. Vollmers, E.T. Colonna, G. Adriany, B. Tramm, J.M. Dubinsky, G. Öz, Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field 17O MR spectroscopy. J. Cereb. Blood Flow Metab. 33(12), 1846–1849 (2013)

    Article  Google Scholar 

  3. X.-H. Zhu, Y. Zhang, N. Zhang, K. Ugurbil, W. Chen, Noninvasive and three-dimensional imaging of CMRO2 in rats at 9.4 T: reproducibility test and normothermia/hypothermia comparison study. J. Cereb. Blood Flow Metab. 27(6), 1225–1234 (2007)

    Article  Google Scholar 

  4. A. Selzer, R.B. Sudrann, Reliability of the determination of cardiac output in man by means of the Fick principle. Circ. Res. 6(4), 485–490 (1958). https://doi.org/10.1161/01.res.6.4.485

    Article  Google Scholar 

  5. S.S. Kety, C.F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. Clin. Invest. 27(4), 476–483 (1948). https://doi.org/10.1172/JCI101994

    Article  Google Scholar 

  6. Pittman, R.N. (2011) The circulatory system and oxygen transport, in Regulation of Tissue Oxygenation. Morgan & Claypool Life Sciences.

  7. S.S. Kety, C.F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am. J. Physiology-Leg. Content 143(1), 53–66 (1945)

    Article  Google Scholar 

  8. S.L. Peng, P. Su, F.N. Wang, Y. Cao, R. Zhang, H. Lu, P. Liu, Optimization of phase-contrast MRI for the quantification of whole-brain cerebral blood flow. J. Magn. Reson. Imaging 42(4), 1126–1133 (2015). https://doi.org/10.1002/jmri.24866

    Article  Google Scholar 

  9. D.S. Williams, J.A. Detre, J.S. Leigh, A.P. Koretsky, Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl. Acad. Sci. 89(1), 212–216 (1992)

    Article  ADS  Google Scholar 

  10. K.R. Thulborn, J.C. Waterton, P.M. Matthews, G.K. Radda, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochimica et Biophysica Acta (BBA)-General Subjects 714(2), 265–270 (1982)

    Article  Google Scholar 

  11. D.P. Bulte, M. Kelly, M. Germuska, J. Xie, M.A. Chappell, T.W. Okell, M.G. Bright, P. Jezzard, Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 60(1), 582–591 (2012). https://doi.org/10.1016/j.neuroimage.2011.12.017

    Article  Google Scholar 

  12. C.J. Gauthier, R.D. Hoge, Magnetic resonance imaging of resting OEF and CMRO(2) using a generalized calibration model for hypercapnia and hyperoxia. Neuroimage 60(2), 1212–1225 (2012). https://doi.org/10.1016/j.neuroimage.2011.12.056

    Article  Google Scholar 

  13. R.G. Wise, A.D. Harris, A.J. Stone, K. Murphy, Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. Neuroimage 83, 135–147 (2013). https://doi.org/10.1016/j.neuroimage.2013.06.008

    Article  Google Scholar 

  14. X. He, D.A. Yablonskiy, Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn. Reson. Med. 57(1), 115–126 (2007). https://doi.org/10.1002/mrm.21108

    Article  Google Scholar 

  15. S. Hubertus, S. Thomas, J. Cho, S. Zhang, Y. Wang, L.R. Schad, Comparison of gradient echo and gradient echo sampling of spin echo sequence for the quantification of the oxygen extraction fraction from a combined quantitative susceptibility mapping and quantitative BOLD (QSM+qBOLD) approach. Magn. Reson. Med. 82(4), 1491–1503 (2019). https://doi.org/10.1002/mrm.27804

    Article  Google Scholar 

  16. D.S. Bolar, B.R. Rosen, A. Sorensen, E. Adalsteinsson, QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn. Reson. Med. 66(6), 1550–1562 (2011)

    Article  Google Scholar 

  17. H. Lu, F. Xu, K. Grgac, P. Liu, Q. Qin, P. van Zijl, Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn. Reson. Med. 67(1), 42–49 (2012). https://doi.org/10.1002/mrm.22970

    Article  Google Scholar 

  18. L.C. Krishnamurthy, P. Liu, Y. Ge, H. Lu, Vessel-specific quantification of blood oxygenation with T2-relaxation-under-phase-contrast MRI. Magn. Reson. Med. 71(3), 978–989 (2014). https://doi.org/10.1002/mrm.24750

    Article  Google Scholar 

  19. J. Guo, E.C. Wong, Venous oxygenation mapping using velocity-selective excitation and arterial nulling. Magn. Reson. Med. 68(5), 1458–1471 (2012). https://doi.org/10.1002/mrm.24145

    Article  Google Scholar 

  20. A.P. Fan, T. Benner, D.S. Bolar, B.R. Rosen, E. Adalsteinsson, Phase-based regional oxygen metabolism (PROM) using MRI. Magn. Reson. Med. 67(3), 669–678 (2012). https://doi.org/10.1002/mrm.23050

    Article  Google Scholar 

  21. E.M. Haacke, S. Lai, J.R. Reichenbach, K. Kuppusamy, F.G. Hoogenraad, H. Takeichi, W. Lin, In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum. Brain Mapp. 5(5), 341–346 (1997)

    Article  Google Scholar 

  22. E.M. Haacke, S. Liu, S. Buch, W. Zheng, D. Wu, Y. Ye, Quantitative susceptibility mapping: current status and future directions. Magn. Reson. Imaging 33(1), 1–25 (2015). https://doi.org/10.1016/j.mri.2014.09.004

    Article  Google Scholar 

  23. J.F. Dunn, Y. Zaim-Wadghiri, B.W. Pogue, I. Kida, BOLD MRI vs. NIR spectrophotometry Will the best technique come forward? Adv. Exp. Med. Biol. 454, 103–113 (1998)

    Article  Google Scholar 

  24. T. Nagaoka, F. Zhao, P. Wang, N. Harel, R.P. Kennan, S. Ogawa, S.-G. Kim, Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition. J. Cereb. Blood Flow Metab. 26(8), 1043–1051 (2006)

    Article  Google Scholar 

  25. K. Nakamura, Y. Shiroto, Y. Tamura, K. Koyama, K. Takeuchi, M. Amanuma, T. Nagasawa, S. Ozawa, An increase in the deoxygenated hemoglobin concentration induced by a working memory task during the refractory period in the hemodynamic response in the human cerebral cortex. Neurosci. Lett. 714, 134531 (2020). https://doi.org/10.1016/j.neulet.2019.134531

    Article  Google Scholar 

  26. S. Ogawa, R.S. Menon, D.W. Tank, S.G. Kim, H. Merkle, J.M. Ellermann, K. Ugurbil, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64(3), 803–812 (1993). https://doi.org/10.1016/S0006-3495(93)81441-3

    Article  Google Scholar 

  27. J.L. Boxerman, L.M. Hamberg, B.R. Rosen, R.M. Weisskoff, MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 34(4), 555–566 (1995)

    Article  Google Scholar 

  28. R.B. Buxton, L.R. Frank, A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17(1), 64–72 (1997)

    Article  Google Scholar 

  29. R.D. Hoge, J. Atkinson, B. Gill, G.R. Crelier, S. Marrett, G.B. Pike, Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. 96(16), 9403–9408 (1999)

    Article  ADS  Google Scholar 

  30. T.L. Davis, K.K. Kwong, R.M. Weisskoff, B.R. Rosen, Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. USA 95(4), 1834–1839 (1998). https://doi.org/10.1073/pnas.95.4.1834

    Article  ADS  Google Scholar 

  31. R.L. Grubb Jr., M.E. Raichle, J.O. Eichling, M.M. Ter-Pogossian, The effects of changes in PaCO2 cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5(5), 630–639 (1974)

    Article  Google Scholar 

  32. E. Rostrup, G.M. Knudsen, I. Law, S. Holm, H.B. Larsson, O.B. Paulson, The relationship between cerebral blood flow and volume in humans. Neuroimage 24(1), 1–11 (2005)

    Article  Google Scholar 

  33. P.A. Ciris, M. Qiu, R.T. Constable, Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans. Magn. Reson. Med. 72(3), 864–875 (2014). https://doi.org/10.1002/mrm.24984

    Article  Google Scholar 

  34. R.D. Hoge, J. Atkinson, B. Gill, G.R. Crelier, S. Marrett, G.B. Pike, Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn. Reson. Med. 42(5), 849–863 (1999). https://doi.org/10.1002/(sici)1522-2594(199911)42:5%3c849::aid-mrm4%3e3.0.co;2-z

    Article  Google Scholar 

  35. V.E. Griffeth, R.B. Buxton, A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. Neuroimage 58(1), 198–212 (2011)

    Article  Google Scholar 

  36. D.P. Bulte, K. Drescher, P. Jezzard, Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn. Reson. Med. 61(2), 391–398 (2009). https://doi.org/10.1002/mrm.21862

    Article  Google Scholar 

  37. P.A. Chiarelli, D.P. Bulte, R. Wise, D. Gallichan, P. Jezzard, A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37(3), 808–820 (2007). https://doi.org/10.1016/j.neuroimage.2007.05.033

    Article  Google Scholar 

  38. C.J. Gauthier, L. Desjardins-Crepeau, C. Madjar, L. Bherer, R.D. Hoge, Absolute quantification of resting oxygen metabolism and metabolic reactivity during functional activation using QUO2 MRI. Neuroimage 63(3), 1353–1363 (2012). https://doi.org/10.1016/j.neuroimage.2012.07.065

    Article  Google Scholar 

  39. D.A. Yablonskiy, Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn. Reson. Med. 39(3), 417–428 (1998). https://doi.org/10.1002/mrm.1910390312

    Article  Google Scholar 

  40. X. He, M. Zhu, D.A. Yablonskiy, Validation of oxygen extraction fraction measurement by qBOLD technique. Magn. Reson. Med. 60(4), 882–888 (2008). https://doi.org/10.1002/mrm.21719

    Article  Google Scholar 

  41. D.A. Carpenter, R.L. Grubb Jr., L.W. Tempel, W.J. Powers, Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 11(5), 837–844 (1991). https://doi.org/10.1038/jcbfm.1991.143

    Article  Google Scholar 

  42. H. Yamauchi, H. Fukuyama, Y. Nagahama, H. Nabatame, M. Ueno, S. Nishizawa, J. Konishi, H. Shio, Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J. Nucl. Med. 40(12), 1992–1998 (1999)

    Google Scholar 

  43. M.N. Diringer, K. Yundt, T.O. Videen, R.E. Adams, A.R. Zazulia, E. Deibert, V. Aiyagari, R.G. Dacey, R.L. Grubb, W.J. Powers, No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. J. Neurosurg. 92(1), 7–13 (2000)

    Article  Google Scholar 

  44. H. Lu, Y. Ge, Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magn. Reson. Med. 60(2), 357–363 (2008). https://doi.org/10.1002/mrm.21627

    Article  Google Scholar 

  45. R.M. Botnar, M. Stuber, P.G. Danias, K.V. Kissinger, W.J. Manning, Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 99(24), 3139–3148 (1999). https://doi.org/10.1161/01.cir.99.24.3139

    Article  Google Scholar 

  46. G.A. Wright, B.S. Hu, A. Macovski, Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J. Magn. Reson. Imaging 1(3), 275–283 (1991)

    Article  Google Scholar 

  47. M.J. Silvennoinen, C.S. Clingman, X. Golay, R.A. Kauppinen, P.C. van Zijl, Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn. Reson. Med. 49(1), 47–60 (2003). https://doi.org/10.1002/mrm.10355

    Article  Google Scholar 

  48. J.M. Zhao, C.S. Clingman, M.J. Narvainen, R.A. Kauppinen, P.C. van Zijl, Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn. Reson. Med. 58(3), 592–597 (2007). https://doi.org/10.1002/mrm.21342

    Article  Google Scholar 

  49. F. Xu, Y. Ge, H. Lu, Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn. Reson. Med. 62(1), 141–148 (2009). https://doi.org/10.1002/mrm.21994

    Article  Google Scholar 

  50. P. Liu, I. Dimitrov, T. Andrews, D.E. Crane, J.K. Dariotis, J. Desmond, J. Dumas, G. Gilbert, A. Kumar, B.J. Maclntosh, Multisite evaluations of a T 2-relaxation-under-spin-tagging (TRUST) MRI technique to measure brain oxygenation. Magn. Reson. Med. 75(2), 680–687 (2016)

    Article  Google Scholar 

  51. P. Liu, F. Xu, H. Lu, Test-retest reproducibility of a rapid method to measure brain oxygen metabolism. Magn. Reson. Med. 69(3), 675–681 (2013). https://doi.org/10.1002/mrm.24295

    Article  ADS  Google Scholar 

  52. F. Xu, J. Uh, M.R. Brier, J. Hart Jr., U.S. Yezhuvath, H. Gu, Y. Yang, H. Lu, The influence of carbon dioxide on brain activity and metabolism in conscious humans. J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011). https://doi.org/10.1038/jcbfm.2010.153

    Article  Google Scholar 

  53. F. Xu, P. Liu, J.M. Pascual, G. Xiao, H. Lu, Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J. Cereb. Blood Flow Metab. 32(10), 1909–1918 (2012). https://doi.org/10.1038/jcbfm.2012.93

    Article  Google Scholar 

  54. F. Xu, P. Liu, J.J. Pekar, H. Lu, Does acute caffeine ingestion alter brain metabolism in young adults? Neuroimage 110, 39–47 (2015)

    Article  Google Scholar 

  55. P. Liu, H. Huang, N. Rollins, L.F. Chalak, T. Jeon, C. Halovanic, H. Lu, Quantitative assessment of global cerebral metabolic rate of oxygen (CMRO2) in neonates using MRI. NMR Biomed. 27(3), 332–340 (2014)

    Article  Google Scholar 

  56. S.L. Peng, J.A. Dumas, D.C. Park, P. Liu, F.M. Filbey, C.J. McAdams, A.E. Pinkham, B. Adinoff, R. Zhang, H. Lu, Age-related increase of resting metabolic rate in the human brain. Neuroimage 98, 176–183 (2014). https://doi.org/10.1016/j.neuroimage.2014.04.078

    Article  Google Scholar 

  57. Y. Ge, Z. Zhang, H. Lu, L. Tang, H. Jaggi, J. Herbert, J.S. Babb, H. Rusinek, R.I. Grossman, Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI. J. Cereb. Blood Flow Metab. 32(3), 403–412 (2012). https://doi.org/10.1038/jcbfm.2011.191

    Article  Google Scholar 

  58. B.P. Thomas, M. Sheng, B.Y. Tseng, T. Tarumi, K. Martin-Cook, K.B. Womack, M.C. Cullum, B.D. Levine, R. Zhang, H. Lu, Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment. J. Cereb. Blood Flow Metab. 37(4), 1508–1516 (2017). https://doi.org/10.1177/0271678X16658662

    Article  Google Scholar 

  59. Z. Wei, J. Xu, P. Liu, L. Chen, W. Li, P. van Zijl, H. Lu, Quantitative assessment of cerebral venous blood T2 in mouse at 11.7 T: implementation, optimization, and age effect. Magn. Reson. Med. 80(2), 521–528 (2018)

    Article  Google Scholar 

  60. M.A. Bernstein, K.F. King, X.J. Zhou, Handbook of MRI Pulse Sequences (Elsevier, 2004).

    Google Scholar 

  61. J.A. Polzin, M.T. Alley, F.R. Korosec, T.M. Grist, Y. Wang, C.A. Mistretta, A complex-difference phase-contrast technique for measurement of volume flow rates. J. Magn. Reson. Imaging 5(2), 129–137 (1995). https://doi.org/10.1002/jmri.1880050202

    Article  Google Scholar 

  62. M.A. Bernstein, Y. Ikezaki, Comparison of phase-difference and complex-difference processing in phase-contrast MR angiography. J. Magn. Reson. Imaging 1(6), 725–729 (1991). https://doi.org/10.1002/jmri.1880010620

    Article  Google Scholar 

  63. J.S. Perlmutter, W.J. Powers, P. Herscovitch, P.T. Fox, M.E. Raichle, Regional asymmetries of cerebral blood flow, blood volume, and oxygen utilization and extraction in normal subjects. J. Cereb. Blood Flow Metab. 7(1), 64–67 (1987). https://doi.org/10.1038/jcbfm.1987.9

    Article  Google Scholar 

  64. M. Ibaraki, S. Miura, E. Shimosegawa, S. Sugawara, T. Mizuta, A. Ishikawa, M. Amano, Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J. Nucl. Med. 49(1), 50–59 (2008). https://doi.org/10.2967/jnumed.107.044008

    Article  Google Scholar 

  65. L.C. Krishnamurthy, D. Mao, K.S. King, H. Lu, Correction and optimization of a T2-based approach to map blood oxygenation in small cerebral veins. Magn. Reson. Med. 75(3), 1100–1109 (2016). https://doi.org/10.1002/mrm.25686

    Article  Google Scholar 

  66. E.Y. Liu, J. Guo, A.B. Simon, F. Haist, D.J. Dubowitz, R.B. Buxton, The potential for gas-free measurements of absolute oxygen metabolism during both baseline and activation states in the human brain. Neuroimage 207, 116342 (2020). https://doi.org/10.1016/j.neuroimage.2019.116342

    Article  Google Scholar 

  67. K. Ishii, M. Sasaki, H. Kitagaki, S. Sakamoto, S. Yamaji, K. Maeda, Regional difference in cerebral blood flow and oxidative metabolism in human cortex. J. Nucl. Med. 37(7), 1086–1088 (1996)

    Google Scholar 

  68. M.A. Fernandez-Seara, A. Techawiboonwong, J.A. Detre, F.W. Wehrli, MR susceptometry for measuring global brain oxygen extraction. Magn. Reson. Med. 55(5), 967–973 (2006). https://doi.org/10.1002/mrm.20892

    Article  Google Scholar 

  69. M. Cerdonio, S. Morante, S. Vitale, [21] Magnetic susceptibility of hemoglobins, in Methods in Enzymology. (Elsevier, 1981), pp. 354–371

    Google Scholar 

  70. R.M. Weisskoff, S. Kiihne, MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn. Reson. Med. 24(2), 375–383 (1992). https://doi.org/10.1002/mrm.1910240219

    Article  Google Scholar 

  71. J.F. Schenck, The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23(6), 815–850 (1996). https://doi.org/10.1118/1.597854

    Article  Google Scholar 

  72. C. Li, M.C. Langham, C.L. Epstein, J.F. Magland, J. Wu, J. Gee, F.W. Wehrli, Accuracy of the cylinder approximation for susceptometric measurement of intravascular oxygen saturation. Magn. Reson. Med. 67(3), 808–813 (2012). https://doi.org/10.1002/mrm.23034

    Article  Google Scholar 

  73. Z.B. Rodgers, J.A. Detre, F.W. Wehrli, MRI-based methods for quantification of the cerebral metabolic rate of oxygen. J. Cereb. Blood Flow Metab. 36(7), 1165–1185 (2016). https://doi.org/10.1177/0271678X16643090

    Article  Google Scholar 

  74. V. Jain, M.C. Langham, F.W. Wehrli, MRI estimation of global brain oxygen consumption rate. J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010). https://doi.org/10.1038/jcbfm.2010.49

    Article  Google Scholar 

  75. X. Feng, A. Deistung, J.R. Reichenbach, Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3 T: evaluation of intra-scanner repeatability. Z. Med. Phys. 28(1), 36–48 (2018)

    Article  Google Scholar 

  76. Y. Wang, T. Liu, Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82–101 (2015). https://doi.org/10.1002/mrm.25358

    Article  Google Scholar 

  77. J. Liu, T. Liu, L. de Rochefort, J. Ledoux, I. Khalidov, W. Chen, A.J. Tsiouris, C. Wisnieff, P. Spincemaille, M.R. Prince, Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3), 2560–2568 (2012)

    Article  Google Scholar 

  78. J.R. Reichenbach, F. Schweser, B. Serres, A. Deistung, Quantitative susceptibility mapping: concepts and applications. Clin. Neuroradiol. 25(S2), 225–230 (2015). https://doi.org/10.1007/s00062-015-0432-9

    Article  Google Scholar 

  79. V. Jain, O. Abdulmalik, K.J. Propert, F.W. Wehrli, Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn. Reson. Med. 68(3), 863–867 (2012). https://doi.org/10.1002/mrm.23282

    Article  Google Scholar 

  80. W.M. Spees, D.A. Yablonskiy, M.C. Oswood, J.J. Ackerman, Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T, and non-Lorentzian signal behavior. Magn. Reso. Med. Off. J. Int. Soc. Mag. Reson. Med. 45(4), 533–542 (2001)

    Article  Google Scholar 

  81. K. Kudo, T. Liu, T. Murakami, J. Goodwin, I. Uwano, F. Yamashita, S. Higuchi, Y. Wang, K. Ogasawara, A. Ogawa, M. Sasaki, Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J. Cereb. Blood Flow. Metab. 36(8), 1424–1433 (2016). https://doi.org/10.1177/0271678X15606713

    Article  Google Scholar 

  82. J. Zhang, T. Liu, A. Gupta, P. Spincemaille, T.D. Nguyen, Y. Wang, Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM). Magn. Reson. Med. 74(4), 945–952 (2015). https://doi.org/10.1002/mrm.25463

    Article  Google Scholar 

  83. J. Zhang, D. Zhou, T.D. Nguyen, P. Spincemaille, A. Gupta, Y. Wang, Cerebral metabolic rate of oxygen (CMRO2) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM). Magn. Reson. Med. 77(5), 1762–1773 (2017). https://doi.org/10.1002/mrm.26253

    Article  Google Scholar 

  84. J. Zhang, J. Cho, D. Zhou, T.D. Nguyen, P. Spincemaille, A. Gupta, Y. Wang, Quantitative susceptibility mapping-based cerebral metabolic rate of oxygen mapping with minimum local variance. Magn. Reson. Med. 79(1), 172–179 (2018). https://doi.org/10.1002/mrm.26657

    Article  Google Scholar 

  85. K.L. Leenders, D. Perani, A.A. Lammertsma, J.D. Heather, P. Buckingham, M.J. Healy, J.M. Gibbs, R.J. Wise, J. Hatazawa, S. Herold et al., Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(Pt 1), 27–47 (1990). https://doi.org/10.1093/brain/113.1.27

    Article  Google Scholar 

  86. J. Cho, Y. Kee, P. Spincemaille, T.D. Nguyen, J. Zhang, A. Gupta, S. Zhang, Y. Wang, Cerebral metabolic rate of oxygen (CMRO2) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn. Reson. Med. 80(4), 1595–1604 (2018). https://doi.org/10.1002/mrm.27135

    Article  Google Scholar 

  87. F.F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977). https://doi.org/10.1126/science.929199

    Article  ADS  Google Scholar 

  88. P.L. Madsen, N.H. Secher, Near-infrared oximetry of the brain. Prog. Neurobiol. 58(6), 541–560 (1999). https://doi.org/10.1016/s0301-0082(98)00093-8

    Article  Google Scholar 

  89. C.E. Elwell, J.R. Henty, T.S. Leung, T. Austin, J.H. Meek, D.T. Delpy, J.S. Wyatt, Measurement of CMRO 2 in neonates undergoing intensive care using near infrared spectroscopy, in Oxygen Transport to Tissue XXVI. (Springer, 2005), pp. 263–268

    Chapter  Google Scholar 

  90. L. Skov, O. Pryds, G. Greisen, H. Lou, Estimation of cerebral venous saturation in newborn infants by near infrared spectroscopy. Pediatr. Res. 33(1), 52–55 (1993). https://doi.org/10.1203/00006450-199301000-00011

    Article  Google Scholar 

  91. C.W. Yoxall, A.M. Weindling, Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age. Pediatr. Res. 44(3), 283–290 (1998)

    Article  Google Scholar 

  92. S.J. Matcher, M. Cope, D.T. Delpy, Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy. Phys. Med. Biol. 39(1), 177–196 (1994). https://doi.org/10.1088/0031-9155/39/1/011

    Article  Google Scholar 

  93. S. Matcher, C. Cooper, Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy. Phys. Med. Biol. 39(8), 1295 (1994). https://doi.org/10.1088/0031-9155/39/8/008

    Article  Google Scholar 

  94. Å. Rinnan, F. Van Den Berg, S.B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 28(10), 1201–1222 (2009)

    Article  Google Scholar 

  95. H. Dehghani, F. Leblond, B.W. Pogue, F. Chauchard, Application of spectral derivative data in visible and near-infrared spectroscopy. Phys. Med. Biol. 55(12), 3381 (2010). https://doi.org/10.1088/0031-9155/55/12/008

    Article  Google Scholar 

  96. S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, E.O. Reynolds, Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 933(1), 184–192 (1988). https://doi.org/10.1016/0005-2728(88)90069-2

    Article  Google Scholar 

  97. R.F. Reinoso, B.A. Telfer, M. Rowland, Tissue water content in rats measured by desiccation. J. Pharmacol. Toxicol. Methods 38(2), 87–92 (1997). https://doi.org/10.1016/s1056-8719(97)00053-1

    Article  Google Scholar 

  98. K.M. Tichauer, J.T. Elliott, J.A. Hadway, D.S. Lee, T.-Y. Lee, K. St, Lawrence, Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets. J. Appl. Physiol. 109(3), 878–885 (2010)

    Article  Google Scholar 

  99. R. Springett, J. Newman, M. Cope, D.T. Delpy, Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain. Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000). https://doi.org/10.1152/ajpheart.2000.279.5.H2202

    Article  Google Scholar 

  100. Q. Zhang, S. Srinivasan, Y. Wu, S. Natah, J.F. Dunn, A near-infrared calibration method suitable for quantification of broadband data in humans. J. Neurosci. Methods 188(2), 181–186 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.037

    Article  Google Scholar 

  101. M. Hashem, Q. Zhang, Y. Wu, T.W. Johnson, J.F. Dunn, Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter metabolic rate for oxygen: a hypothermia validation study. Neuroimage 206, 116315 (2020). https://doi.org/10.1016/j.neuroimage.2019.116315

    Article  Google Scholar 

  102. J.F. Dunn, Q. Zhang, Y. Wu, S. Srinivasan, M.R. Smith, R.A. Shaw, Monitoring angiogenesis noninvasively with near-infrared spectroscopy. J. Biomed. Opt. 13(6), 064043 (2008). https://doi.org/10.1117/1.3000431

    Article  ADS  Google Scholar 

  103. C.E. Cooper, D.T. Delpy, E.M. Nemoto, The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study. Biochem. J. 332(3), 627–632 (1998). https://doi.org/10.1042/bj3320627

    Article  Google Scholar 

  104. R. Yang, Q. Zhang, Y. Wu, J.F. Dunn, Monitoring angiogenesis using a human compatible calibration for broadband near-infrared spectroscopy. J. Biomed. Opt. 18(1), 016011 (2013)

    Article  ADS  Google Scholar 

  105. M.J.T. Van De Ven, W.N.J.M. Colier, M.C. Van Der Sluijs, D. Walraven, B. Oeseburg, H. Folgering, Can cerebral blood volume be measured reproducibly with an improved near infrared spectroscopy system? J. Cereb. Blood Flow Metab. 21(2), 110–113 (2001). https://doi.org/10.1097/00004647-200102000-00002

    Article  Google Scholar 

  106. J.S. Wyatt, D.T. Delpy, M. Cope, S. Wray, E.O.R. Reynolds, Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. Lancet 328(8515), 1063–1066 (1986). https://doi.org/10.1016/s0140-6736(86)90467-8

    Article  Google Scholar 

  107. T. Wolf, U. Lindauer, U. Reuter, T. Back, A. Villringer, K. Einhäupl, U. Dirnagl, Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 17(9), 950–954 (1997). https://doi.org/10.1097/00004647-199709000-00004

    Article  Google Scholar 

  108. C. Elwell, M. Cope, A. Edwards, J. Wyatt, D. Delpy, E. Reynolds, Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J. Appl. Physiol. 77(6), 2753–2760 (1994)

    Article  Google Scholar 

  109. K.M. Tichauer, J.A. Hadway, T.Y. Lee, K. St Lawrence, Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study. J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006). https://doi.org/10.1038/sj.jcbfm.9600230

    Article  Google Scholar 

  110. D.W. Brown, J. Hadway, T.-Y. Lee, Near-infrared spectroscopy measurement of oxygen extraction fraction and cerebral metabolic rate of oxygen in newborn piglets. Pediatr. Res. 54(6), 861–867 (2003). https://doi.org/10.1203/01.pdr.0000090928.93045.be

    Article  Google Scholar 

  111. L.M. Hamberg, G.J. Hunter, D. Kierstead, E.H. Lo, R. Gilberto Gonzalez, G.L. Wolf, Measurement of cerebral blood volume with subtraction three-dimensional functional CT. AJNR Am. J. Neuroradiol. 17(10), 1861–1869 (1996)

    Google Scholar 

  112. U. Sabatini, P. Celsis, G. Viallard, A. Rascol, J.P. Marc-Vergnes, Quantitative assessment of cerebral blood volume by single-photon emission computed tomography. Stroke 22(3), 324–330 (1991). https://doi.org/10.1161/01.str.22.3.324

    Article  Google Scholar 

  113. D.W. Brown, P.A. Picot, J.G. Naeini, R. Springett, D.T. Delpy, T.-Y. Lee, Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets. Pediatr. Res. 51(5), 564–570 (2002)

    Article  Google Scholar 

  114. D. Bereczki, L. Wei, T. Otsuka, V. Acuff, K. Pettigrew, C. Patlak, J. Fenstermacher, Hypoxia increases velocity of blood flow through parenchymal microvascular systems in rat brain. J. Cereb. Blood Flow Metab. 13(3), 475–486 (1993)

    Article  Google Scholar 

  115. M. Phelps, S. Huang, E. Hoffman, D. Kuhl, Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J. Nucl. Med. 20(4), 328–334 (1979)

    Google Scholar 

  116. H.M. Watzman, C.D. Kurth, L.M. Montenegro, J. Rome, J.M. Steven, S.C. Nicolson, Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93(4), 947–953 (2000). https://doi.org/10.1097/00000542-200010000-00012

    Article  Google Scholar 

  117. N.C. Brun, A. Moen, K. Borch, O.D. Saugstad, G. Greisen, Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets. Am. J. Physiol. 273(2 Pt 2), H682–H686 (1997). https://doi.org/10.1152/ajpheart.1997.273.2.H682

    Article  Google Scholar 

  118. S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, S. Itoh, Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia. J. Biomed. Opt. 10(2), 024026 (2005)

    Article  ADS  Google Scholar 

  119. Matcher, S.J., P.J. Kirkpatrick, K. Nahid, M. Cope, and D.T. Delpy. Absolute quantification methods in tissue near-infrared spectroscopy. in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation. 1995. International Society for Optics and Photonics.

  120. Suzuki, S., S. Takasaki, T. Ozaki, and Y. Kobayashi. Tissue oxygenation monitor using NIR spatially resolved spectroscopy. in Optical tomography and spectroscopy of tissue III. 1999. International Society for Optics and Photonics.

  121. M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl. Opt. 28(12), 2331–2336 (1989)

    Article  ADS  Google Scholar 

  122. E. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation. Anal. Biochem. 195(2), 330–351 (1991)

    Article  Google Scholar 

  123. Yamashita, Y., M. Oda, E. Olimae, and M. Tamura. Continuous measurement of oxy-and deoxyhemoglobin of piglet brain by time-resolved spectroscopy. in Biomedical Optical Spectroscopy and Diagnostics. 1998. Optical Society of America.

  124. Oda, M., Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya. Near-infrared time-resolved spectroscopy system for tissue oxygenation monitor. in Optical Tomography and Spectroscopy of Tissue III. 1999. International Society for Optics and Photonics.

  125. K. Verdecchia, M. Diop, T.Y. Lee, K. St Lawrence, Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy. J. Biomed. Opt 18(2), 27007 (2013). https://doi.org/10.1117/1.JBO.18.2.027007

    Article  Google Scholar 

  126. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, H. Rinneberg, Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl. Opt. 43(15), 3037–3047 (2004)

    Article  ADS  Google Scholar 

  127. J.T. Elliott, M. Diop, K.M. Tichauer, T.-Y. Lee, K.S. Lawrence, Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy. J. Biomed. Opt. 15(3), 037014 (2010)

    Article  ADS  Google Scholar 

  128. E. Gratton, Near infrared optical spectroscopy of tissue using an LED frequency domain spectrometer. Adv. Opt. Imaging Photon Migr. Tech. Digest 1994, 212–215 (1994)

    Google Scholar 

  129. Ma, H.Y., Q. Xu, J. Bellesteros, V. Ntziachristos, Q. Zhang, and B. Chance. Quantitative study of hypoxia stress in piglet brain by IQ phase modulation oximetry. in Optical Tomography and Spectroscopy of Tissue III. 1999. International Society for Optics and Photonics.

  130. M.A. Franceschini, D.A. Boas, A. Zourabian, S.G. Diamond, S. Nadgir, D.W. Lin, J.B. Moore, S. Fantini, Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects. J. Appl. Physiol. 92(1), 372–384 (2002)

    Article  Google Scholar 

  131. Du, C., Andersen, C., and Chance, B. Quantitative detection of hemoglobin saturation on piglet brain by near-infrared frequency-domain spectroscopy. in Photon Propagation in Tissues III, vol. 3194. (International Society for Optics and Photonics, 1998), pp 55–62. https://doi.org/10.1117/12.301089

  132. S.R. Arridge, M. Cope, D. Delpy, The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys. Med. Biol. 37(7), 1531 (1992)

    Article  Google Scholar 

  133. D. Delpy, M. Cope, Quantification in tissue near–infrared spectroscopy. Philosophical transactions of the Royal Society of London. Ser. B Biol. Sci. 352(1354), 649–659 (1997)

    Article  Google Scholar 

  134. M. Dehaes, A. Aggarwal, P.-Y. Lin, C. Rosa Fortuno, A. Fenoglio, N. Roche-Labarbe, J.S. Soul, M.A. Franceschini, P.E. Grant, Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia. J. Cereb. Blood Flow Metab. 34(1), 87–94 (2014)

    Article  Google Scholar 

  135. N. Roche-Labarbe, S.A. Carp, A. Surova, M. Patel, D.A. Boas, P.E. Grant, M.A. Franceschini, Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life. Hum. Brain Mapp. 31(3), 341–352 (2010)

    Article  Google Scholar 

  136. A. Edwards, C. Richardson, M. Cope, J. Wyatt, D. Delpy, E. Reynolds, Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet 332(8614), 770–771 (1988)

    Article  Google Scholar 

  137. J.H. Meek, L. Tyszczuk, C.E. Elwell, J. Wyatt, Cerebral blood flow increases over the first three days of life in extremely preterm neonates. Arch. Dis. Child. Fetal Neonatal. Ed. 78(1), F33–F37 (1998)

    Article  Google Scholar 

  138. M. Noone, M. Sellwood, J. Meek, J. Wyatt, Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation. Acta Paediatr. 92(9), 1079–1084 (2003)

    Article  Google Scholar 

  139. J. Patel, K. Marks, I. Roberts, D. Azzopardi, A.D. Edwards, Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr. Res. 43(1), 34–39 (1998)

    Article  Google Scholar 

  140. K.M. Tichauer, D.W. Brown, J. Hadway, T.Y. Lee, K. St Lawrence, Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets. J. Appl. Physiol. 100(3), 850–857 (2006). https://doi.org/10.1152/japplphysiol.00830.2005

    Article  Google Scholar 

  141. R. Springett, Y. Sakata, D.T. Delpy, Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green. Phys Med Biol 46(8), 2209–2225 (2001). https://doi.org/10.1088/0031-9155/46/8/312

    Article  Google Scholar 

  142. E.H. Niggemann, T. Patrick, K.P. Sunnergren, M.D. Winniford, L.D. Hillis, Detection of intracardiac left-to-right shunting in adults: a prospective analysis of the variability of the standard indocyanine green technique in patients without shunting. Am. J. Cardiol. 60(4), 355–357 (1987)

    Article  Google Scholar 

  143. P.A. Anderson, K.W. Bowyer, R.H. Jones, Effects of age on radionuclide angiographic detection and quantitation of left-to-right shunts. Am. J. Cardiol. 53(7), 879–883 (1984)

    Article  Google Scholar 

  144. H.U. Bucher, A.D. Edwards, A.E. Lipp, G. Duc, Comparison between near infrared spectroscopy and 133xenon clearance for estimation of cerebral blood flow in critically Ill preterm infants. Pediatr. Res. 33(1), 56–60 (1993). https://doi.org/10.1203/00006450-199301000-00012

    Article  Google Scholar 

  145. V. Jain, E.M. Buckley, D.J. Licht, J.M. Lynch, P.J. Schwab, M.Y. Naim, N.A. Lavin, S.C. Nicolson, L.M. Montenegro, A.G. Yodh, F.W. Wehrli, Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics. J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014). https://doi.org/10.1038/jcbfm.2013.214

    Article  Google Scholar 

  146. M. Diop, J. Kishimoto, V. Toronov, D.S. Lee, K. St Lawrence, Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants. Biomed. Opt. Express 6(10), 3907–3918 (2015). https://doi.org/10.1364/BOE.6.003907

    Article  Google Scholar 

  147. C. Cheung, J.P. Culver, K. Takahashi, J.H. Greenberg, A.G. Yodh, In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies. Phys. Med. Biol. 46(8), 2053–2065 (2001). https://doi.org/10.1088/0031-9155/46/8/302

    Article  Google Scholar 

  148. D. Boas, A. Yodh, Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 192–215 (1997)

    Article  ADS  Google Scholar 

  149. M. Schweiger, S. Arridge, Optical tomographic reconstruction in a complex head model using a priori region boundary information. Phys. Med. Biol. 44(11), 2703 (1999)

    Article  Google Scholar 

  150. B.A. Brooksby, H. Dehghani, B.W. Pogue, K.D. Paulsen, Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities. IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003)

    Article  ADS  Google Scholar 

  151. V. Ntziachristos, X. Ma, B. Chance, Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev. Sci. Instrum. 69(12), 4221–4233 (1998)

    Article  ADS  Google Scholar 

  152. H. Xu, R. Springett, H. Dehghani, B.W. Pogue, K.D. Paulsen, J.F. Dunn, Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies. Appl. Opt. 44(11), 2177–2188 (2005). https://doi.org/10.1364/ao.44.002177

    Article  ADS  Google Scholar 

  153. Q. Zhu, N. Chen, S.H. Kurtzman, Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound. Opt. Lett. 28(5), 337–339 (2003)

    Article  ADS  Google Scholar 

  154. A. Li, E.L. Miller, M.E. Kilmer, T.J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R.H. Moore, Tomographic optical breast imaging guided by three-dimensional mammography. Appl. Opt. 42(25), 5181–5190 (2003)

    Article  ADS  Google Scholar 

  155. J.F. Dunn, N. Nathoo, R. Yang, A tale of two methods: combining near-infrared spectroscopy with MRI for studies of brain oxygenation and metabolism, in Oxygen Transport to Tissue XXXVI. (Springer, 2014), pp. 65–71

    Chapter  Google Scholar 

  156. L. Gagnon, M.A. Yücel, M. Dehaes, R.J. Cooper, K.L. Perdue, J. Selb, T.J. Huppert, R.D. Hoge, D.A. Boas, Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 59(4), 3933–3940 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.054

    Article  Google Scholar 

  157. H. Xu, B.W. Pogue, H. Dehghani, R. Springett, K.D. Paulsen, J.F. Dunn, Feasibility of NIR tomographic reconstruction with multispectral continuous wave data by mapping into frequency domain data. In optical tomography and spectroscopy of tissue V. Int. Soc. Opt. Photonics 4955, 103 (2003)

    Google Scholar 

  158. A. Kleinschmidt, H. Obrig, M. Requardt, K.-D. Merboldt, U. Dirnagl, A. Villringer, J. Frahm, Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J. Cereb. Blood Flow Metab. 16(5), 817–826 (1996)

    Article  Google Scholar 

  159. T. Temma, M. Yamazaki, J. Miyanohara, H. Shirakawa, N. Kondo, K. Koshino, S. Kaneko, H. Iida, Sequential PET estimation of cerebral oxygen metabolism with spontaneous respiration of 15O-gas in mice with bilateral common carotid artery stenosis. J. Cereb. Blood Flow Metab. 37(10), 3334–3343 (2017)

    Article  Google Scholar 

  160. S.-H. Yee, K. Lee, P.A. Jerabek, P.T. Fox, Quantitative measurement of oxygen metabolic rate in the rat brain using microPET imaging of briefly inhaled 15O-labelled oxygen gas. Nucl. Med. Commun. 27(7), 573–581 (2006)

    Article  Google Scholar 

  161. X.-H. Zhu, J.M. Chen, T.-W. Tu, W. Chen, S.-K. Song, Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice. Neuroimage 64, 437–447 (2013)

    Article  Google Scholar 

  162. S. Lou, V.C. Lepak, L.E. Eberly, B. Roth, W. Cui, X.-H. Zhu, G. Öz, J.M. Dubinsky, Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress. Hum. Mol. Genet. 25(13), 2813–2826 (2016)

    Google Scholar 

  163. D. Fiat, S. Kang, Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 17O in vivo NMR spectroscopy and magnetic resonance imaging: Part 2. Determination of CMRO2, for the rat by 17O NMR, and CMRO2, rCBF and the partition coefficient for the cat by 17O MRI. Neurol. Res. 15(1), 7–22 (1993)

    Article  Google Scholar 

  164. F. Hyder, R.P. Kennan, I. Kida, G.F. Mason, K.L. Behar, D. Rothman, Dependence of oxygen delivery on blood flow in rat brain: a 7 tesla nuclear magnetic resonance study. J. Cereb. Blood Flow Metab. 20(3), 485–498 (2000)

    Article  Google Scholar 

  165. C. Peeters-Scholte, E. Van Den Tweel, F. Groenendaal, F. Van Bel, Redox state of near infrared spectroscopy-measured cytochrome aa3 correlates with delayed cerebral energy failure following perinatal hypoxia-ischaemia in the newborn pig. Exp. Brain Res. 156(1), 20–26 (2004). https://doi.org/10.1007/s00221-003-1761-5

    Article  Google Scholar 

  166. M. Tsuji, H. Naruse, J. Volpe, D. Holtzman, Reduction of cytochrome aa 3 measured by near-infrared spectroscopy predicts cerebral energy loss in hypoxic piglets. Pediatr. Res. 37(3), 253–259 (1995)

    Article  Google Scholar 

  167. T. Shinoka, G. Nollert, D. Shum-Tim, A. du Plessis, R.A. Jonas, Utility of near-infrared spectroscopic measurements during deep hypothermic circulatory arrest. Ann. Thorac. Surg. 69(2), 578–583 (2000)

    Article  Google Scholar 

  168. J.D. Winter, K.M. Tichauer, N. Gelman, R.T. Thompson, T.-Y. Lee, K. St, Lawrence, changes in cerebral oxygen consumption and high-energy phosphates during early recovery in hypoxic-ischemic piglets: a combined near-infrared and magnetic resonance spectroscopy study. Pediatr. Res. 65(2), 181–187 (2009). https://doi.org/10.1203/pdr.0b013e31818f06fb

    Article  Google Scholar 

  169. E.L. Rolett, A. Azzawi, K.J. Liu, M.N. Yongbi, H.M. Swartz, J.F. Dunn, Critical oxygen tension in rat brain: a combined 31P-NMR and EPR oximetry study. Am. J. Physiology-Regulat. Integr. Comp. Physiol. 279(1), R9–R16 (2000). https://doi.org/10.1152/ajpregu.2000.279.1.r9

    Article  Google Scholar 

  170. M. D’Esposito, L.Y. Deouell, A. Gazzaley, Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat. Rev. Neurosci. 4(11), 863–872 (2003). https://doi.org/10.1038/nrn1246

    Article  Google Scholar 

  171. W. Lin, W.J. Powers, Oxygen metabolism in acute ischemic stroke. J. Cereb. Blood Flow Metab. 38(9), 1481–1499 (2018). https://doi.org/10.1177/0271678X17722095

    Article  Google Scholar 

  172. N.R. Sims, H. Muyderman, Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta (BBA)- Mol. Basis Dis. 1802(1), 80–91 (2010)

    Article  Google Scholar 

  173. M.L. Diaz-Hung, M.E. Gonzalez Fraguela, Oxidative stress in neurological diseases: cause or effect? Neurologia 29(8), 451–452 (2014). https://doi.org/10.1016/j.nrl.2013.06.022

    Article  Google Scholar 

  174. S. Nikam, P. Nikam, S.K. Ahaley, A.V. Sontakke, Oxidative stress in Parkinson’s disease. Indian J. Clin. Biochem. 24(1), 98–101 (2009). https://doi.org/10.1007/s12291-009-0017-y

    Article  Google Scholar 

  175. C. Zhou, Y. Huang, S. Przedborski, Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann. N.Y. Acad. Sci. 1147, 93–104 (2008). https://doi.org/10.1196/annals.1427.023

    Article  ADS  Google Scholar 

  176. W.J. Powers, T.O. Videen, J. Markham, K.J. Black, N. Golchin, J.S. Perlmutter, Cerebral mitochondrial metabolism in early Parkinson’s disease. J. Cereb. Blood. Flow Metab. 28(10), 1754–1760 (2008). https://doi.org/10.1038/jcbfm.2008.63

    Article  Google Scholar 

  177. H. Braak, K. Del Tredici, U. Rub, R.A. de Vos, E.N. Jansen Steur, E. Braak, Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24(2), 197–211 (2003). https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  Google Scholar 

  178. M.A. Lovell, W.R. Markesbery, Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res. 35(22), 7497–7504 (2007). https://doi.org/10.1093/nar/gkm821

    Article  Google Scholar 

  179. R.L. Buckner, A.Z. Snyder, B.J. Shannon, G. LaRossa, R. Sachs, A.F. Fotenos, Y.I. Sheline, W.E. Klunk, C.A. Mathis, J.C. Morris, Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25(34), 7709–7717 (2005)

    Article  Google Scholar 

  180. I.P. Barcelos, R.M. Troxell, J.S. Graves, Mitochondrial dysfunction and multiple sclerosis. Biology (Basel) 8(2), 37 (2019). https://doi.org/10.3390/biology8020037

    Article  Google Scholar 

  181. L.P. Rowland, N.A. Shneider, Amyotrophic lateral sclerosis. N. Engl. J. Med. 344(22), 1688–1700 (2001)

    Article  Google Scholar 

  182. B.G. Jenkins, W.J. Koroshetz, M.F. Beal, B.R. Rosen, Evidence for irnnairment of energy metabofism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43(12), 2689–2689 (1993)

    Article  Google Scholar 

  183. W.J. Koroshetz, B.G. Jenkins, B.R. Rosen, M.F. Beal, Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann. Neurol. 41(2), 160–165 (1997). https://doi.org/10.1002/ana.410410206

    Article  Google Scholar 

  184. M.C. Hsieh, L.W. Kuo, Y.A. Huang, J.H. Chen, Investigating hyperoxic effects in the rat brain using quantitative susceptibility mapping based on MRI phase. Magn. Reson. Med. 77(2), 592–602 (2017). https://doi.org/10.1002/mrm.26139

    Article  Google Scholar 

Download references

Funding

Canadian Institute of Health Research project grant 173416, National Sciences and Engineering Research Council discovery grant RGPIN-2020-05225, the Canadian Foundation for Innovation, Alberta Graduate Excellence Scholarship (AGES) and University of Calgary Eyes High International Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

MH: conceptualization, literature search, and writing—original draft preparation; JFD: conceptualization, writing—review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Jeff F. Dunn.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, M., Dunn, J.F. Brain Oximetry and the Quest for Quantified Metabolic Rate: Applications Using MRI and Near-Infrared Spectroscopy. Appl Magn Reson 52, 1343–1377 (2021). https://doi.org/10.1007/s00723-021-01345-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01345-y

Navigation