Evaluation of a Polyethylene Glycol Phantom for Measuring Apparent Diffusion Coefficients Using Three 3.0 T MRI Systems


We aimed to examine the possibility that polyethylene glycol (PEG) phantoms can simulate apparent diffusion coefficients (ADCs) of malignant tumors and the effectiveness of PEG phantoms using three 3.0 T magnetic resonance imaging (MRI) systems. In particular, the correlations between PEG concentrations and ADC values, the validation of ADC measurement precision, and the stability and reproducibility of PEG phantom were verified. A phantom containing 0, 0.625, 1.250, 2.5, 5, 10, 20 mM PEG was assessed using three MRI systems. The endpoints comprised correlations between PEG concentrations and ADC, validation of ADC measurement precision and the stability and reproducibility of the PEG phantom. The correlation coefficients between PEG concentrations and the ADC of the three MRI systems and among the three MRI systems revealed negative (r ≈ − 1.000, P < 0.001) and positive (r ≈ 1.000, P < 0.001) correlations. The ADCmean of 2.5–20 mM PEG was significant (P < 0.05 t tests), and that at ≥ 10 mM PEG was < 1.0 × 10–3 mm2/s. The %CV ranged from 1.20 to 4.62, and repeatability was confirmed by the 90% confidence interval. The maximum values for DifferenceChange over time and DifferencePri.vs.New were 0.20 and 0.19 × 10–3 mm2/s, respectively. In this study, we found that PEG concentrations ≥ 10 mM are required to simulate the ADCs of malignant tumors (ADC < 1.0 × 10–3 mm2/s). We also showed that the ADC value is easily controlled by adjusting PEG concentrations, and can be stably measured using our PEG phantom for at least 6 months. The PEG phantom can easily and stably simulate the ADC of malignant tumors with high reproducibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    I. Lavdas, K.C. Behan, A. Papadaki, D.W. McRobbie, E.O. Aboagye, J. Magn. Reson. Imaging 38, 173–179 (2013)

    Article  Google Scholar 

  2. 2.

    M. Bateman, L.A. Slater, T. Leslie-Mazwi, C.Z. Simonsen, S. Stuckey, R.V. Chandra, Top. Magn. Reson. Imaging 26, 77–82 (2017)

    Article  Google Scholar 

  3. 3.

    A. Stecco, Leuk. Lymphoma 59, 2546–2556 (2018)

    Article  Google Scholar 

  4. 4.

    Y. Assaf, O. Pasternak, J. Mol. Neurosci. 34, 51–61 (2008)

    Article  Google Scholar 

  5. 5.

    S. Higano, X. Yun, T. Kumabe, M. Watanabe, S. Mugikura, A. Umetsu, A. Sato, T. Yamada, S. Takahashi, Radiology 241, 839–846 (2006)

    Article  Google Scholar 

  6. 6.

    K. Kono, Y. Inoue, K. Nakayama, M. Shakudo, M. Morino, K. Ohata, K. Wakasa, R. Yamada, AJNR Am. J. Neuroradiol. 22, 1081–1088 (2001)

    Google Scholar 

  7. 7.

    Y. Tsushima, A. Takahashi-Taketomi, K. Endo, J. Magn. Reson. Imaging 30, 249–255 (2009)

    Article  Google Scholar 

  8. 8.

    E. Rubesova, A.S. Grell, V. De Maertelaer, T. Metens, S.L. Chao, M. Lemort, J. Magn. Reson. Imaging 24, 319–324 (2006)

    Article  Google Scholar 

  9. 9.

    A. Ogura, K. Hayakawa, T. Miyati, F. Maeda, Eur J Radiol. 77, 185–188 (2011)

    Article  Google Scholar 

  10. 10.

    A. Ogura, T. Tamura, M. Ozaki, T. Doi, K. Fujimoto, T. Miyati, Y. Ito, F. Maeda, H. Tarewaki, M. Takahashi, J. Comput. Assist. Tomogr. 39, 760–765 (2015)

    Article  Google Scholar 

  11. 11.

    M. Sasaki, K. Yamada, Y. Watanabe, M. Matsui, M. Ida, S. Fujiwara, E.I. Shibata, Acute Stroke Imaging Standardization Group-Japan. Radiology 249, 624–630 (2008)

    Article  Google Scholar 

  12. 12.

    N. Tsujita, N. Kai, Y. Fujita, Y. Hiai, T. Hirai, M. Kitajima, Y. Yamashita, R. Murakami, Magn. Reson. Med. Sci. 13, 81–87 (2014)

    Article  Google Scholar 

  13. 13.

    D. Malyarenko, C.J. Galbán, F.J. Londy, C.R. Meyer, T.D. Johnson, A. Rehemtulla, B.D. Ross, T.L. Chenevert, J Magn. Reson. Imaging 37, 1238–1246 (2013)

    Article  Google Scholar 

  14. 14.

    T.L. Chenevert, C.J. Galbán, M.K. Ivancevic, S.E. Rohrer, F.J. Londy, T.C. Kwee, C.R. Meyer, T.D. Johnson, A. Rehemtulla, B.D. Ross, J. Magn. Reson. Imaging 34, 983–987 (2011)

    Article  Google Scholar 

  15. 15.

    K.E. Keenan, J.R. Biller, J.G. Delfino, M.A. Boss, M.D. Does, J.L. Evelhoch, M.A. Griswold, J.L. Gunter, R.S. Hinks, S.W. Hoffman, G. Kim, R. Lattanzi, X. Li, L. Marinelli, G.J. Metzger, P. Mukherjee, R.J. Nordstrom, A.P. Peskin, E. Perez, S.E. Russek, B. Sahiner, N. Serkova, A. Shukla-Dave, M. Steckner, K.F. Stupic, L.J. Wilmes, H.H. Wu, H. Zhang, E.F. Jackson, D.C. Sullivan, J. Magn. Reson. Imaging 49, e26–e39 (2019)

    Article  Google Scholar 

  16. 16.

    E.M. Palacios, A.J. Martin, M.A. Boss, F. Ezekiel, Y.S. Chang, E.L. Yuh, M.J. Vassar, D.M. Schnyer, C.L. MacDonald, K.L. Crawford, A. Irimia, A.W. Toga, P. Mukherjee, AJNR Am. J. Neuroradiol. 38, 537–545 (2017)

    Article  Google Scholar 

  17. 17.

    N. Tyagi, M. Cloutier, K. Zakian, J.O. Deasy, M. Hunt, A. Rimner, J. Appl. Clin. Med. Phys. 20, 284–292 (2019)

    Article  Google Scholar 

  18. 18.

    R. Matsuya, M. Kuroda, Y. Matsumoto, H. Kato, H. Matsuzaki, J. Asaumi, J. Murakami, K. Katashima, M. Ashida, T. Sasaki, T. Sei, K. Himei, K. Katsui, N. Katayama, M. Takemoto, S. Kanazawa, S. Mimura, S. Oono, T. Kitayama, S. Tahara, K. Inamura, Int. J. Oncol. 35, 893–900 (2009)

    Google Scholar 

  19. 19.

    I. Delakis, E.M. Moore, M.O. Leach, J.P. De Wilde, Phys. Med. Biol. 49, 1409–1422 (2004)

    Article  Google Scholar 

  20. 20.

    H.J. Laubach, P.M. Jakob, K.O. Loevblad, A.E. Baird, M.P. Bovo, R.R. Edelman, S. Warach, J. Magn. Reson. Imaging 8, 1349–1354 (1998)

    Article  Google Scholar 

  21. 21.

    G. Kalaitzakis, T. Boursianis, G. Gourzoulidis, S. Gourtsoyianni, G. Lymperopoulou, K. Marias, A. Karantanas, T.G. Maris, Phys. Med. 73, 179–189 (2020)

    Article  Google Scholar 

  22. 22.

    T.-Q. Li, D.-H. Kim, M.E. Moseley, J. Magn. Reson. Imaging 21, 468–475 (2005)

    Article  Google Scholar 

  23. 23.

    J.G. Hirsch, M. Bock, M. Essig, L.R. Schad, Magn. Reson. Imaging 17, 705–716 (1999)

    Article  Google Scholar 

  24. 24.

    S. Gatidis, H. Schmidt, P. Martirosian, N.F. Schwenzer, Magn. Reson. Med. 72, 459–463 (2014)

    Article  Google Scholar 

  25. 25.

    N.P. Jerome, M.V. Papoutsaki, M.R. Orton, H.G. Parkes, J.M. Winfield, M.A. Boss, M.O. Leach, N.M. de Souza, D.J. Collins, Med. Phys. 43, 2998–3007 (2016)

    Article  Google Scholar 

  26. 26.

    P. Pullens, P. Bladt, J. Sijbers, A.I. Maas, P.M. Parizel, Med. Phys. 44, 1063–1070 (2017)

    Article  Google Scholar 

  27. 27.

    O. Ashikyan, M. Chalian, D. Moore, Y. Xi, P. Pezeshk, A. Chhabra, Skelet. Radiol. 48, 1765–1773 (2019)

    Article  Google Scholar 

  28. 28.

    D.C. Sullivan, N.A. Obuchowski, L.G. Kessler, D.L. Raunig, C. Gatsonis, E.P. Huang, M. Kondratovich, L.M. McShane, A.P. Reeves, D.P. Barboriak, A.R. Guimaraes, R.L. Wahl, Radiology 277, 813–825 (2015)

    Article  Google Scholar 

Download references


This research was a part of the activity of the academic investigation study group (Multicenter research about the quantifiability of SUV in FDG-PET and ADC in the MRI) of Japanese Society of Radiological Technology (JSRT), and was supported in part by KAKENHI Grant-in-Aid for Young Scientists (B) (no. 16K19239) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information



Corresponding author

Correspondence to Eisuke Sato.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sato, E., Fukuzawa, K., Takashima, H. et al. Evaluation of a Polyethylene Glycol Phantom for Measuring Apparent Diffusion Coefficients Using Three 3.0 T MRI Systems. Appl Magn Reson 52, 619–631 (2021). https://doi.org/10.1007/s00723-021-01336-z

Download citation