Skip to main content
Log in

A Smoothly-Connected Crescent Transverse Gradient Coil Design for 50mT MRI System

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

High-performance gradient coils are always needed in magnetic resonance imaging (MRI) systems. However, conventional target-field methods for coil design have drawbacks such as extra magnetic deviation caused by a wire connection. In this work, a crescent-shaped structure is proposed to design bi-planar transverse gradient coils for a 50mT MRI system, in which the shape of each loop is determined by only three positional parameters, making it convenient to optimize. Smooth arcs with gradual-changing radii replace the extra connecting lines brought by conventional methods. An optimization problem aiming at high coil efficiency was established, and the optimal design was compared with the calculation result of a conventional target-field method. It is found that the efficiency of X and Y gradient coils is respectively 97.37 μT/m/A and 99.87 μT/m/A, higher than 89.32 μT/m/A and 91.57 μT/m/A of conventional target-field approach. Finally, the optimal gradient coils were constructed, and the effectiveness of the simulation was validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Tsai, R. Mair, M. Rosen, S. Patz, R. Walsworth, J. Magn. Reson. 193(2), 274–285 (2008)

    Article  ADS  Google Scholar 

  2. T. O’Reilly, W. Teeuwisse, A. Webb, J. Magn. Reson. 307, 106578 (2019)

    Article  Google Scholar 

  3. R. Turner, Magn. Reson. Imaging. 11(7), 903–920 (1993)

    Article  Google Scholar 

  4. B.J. Fisher, N. Dillon, T.A. Carpenter, L.D. Hall, Magn. Reson. Imaging. 15(3), 369–376 (1997)

    Article  Google Scholar 

  5. D. Tomasi, E.C. Caparelli, H. Panepucci, B. Foerster, J. Magn. Reson. 140(2), 325–339 (1999)

    Article  ADS  Google Scholar 

  6. E.C. Caparelli, D. Tomasi, H. Panepucci, J. Magn. Reson. Imaging. 9(5), 725–731 (2015)

    Article  Google Scholar 

  7. R. Turner, J. Phys. D:Appl. Phys. 19(8), L147–L151 (1986)

    Article  ADS  Google Scholar 

  8. M. Pissanetzky, Sci. Technol. 3, 667 (1992)

    ADS  Google Scholar 

  9. G.N. Peeren, J. Comput. Phys. 191(1), 305–321 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. L.K. Forbes, S. Crozier, IEEE Trans. Magn. 40(4), 1929–1938 (2004)

    Article  ADS  Google Scholar 

  11. L.K. Forbes, M.A. Brideson, S. Crozier, IEEE Trans. Magn. 41(6), 2134–2144 (2005)

    Article  ADS  Google Scholar 

  12. W. Liu, D. Zu, X. Tang, H. Guo, J. Phys. D: Appl. Phys. 40(15), 4418–4424 (2007)

    Article  ADS  Google Scholar 

  13. H.S. Lopez, F. Liu, M. Poole, S. Crozier, IEEE Trans. Magn. 45(2), 767–775 (2009)

    Article  ADS  Google Scholar 

  14. F. Jia, Z. Liu, M. Zaitsev, J. Hennig, J. Korvink, Struct. Multidisc. Optim. 49(3), 523–535 (2014)

    Article  Google Scholar 

  15. H.S. Lopez et al., Appl. Magn. Reson. 49, 959–973 (2018)

    Article  Google Scholar 

  16. P. Michael, R. Bowtell, Concepts Magn. Reson. Part B 31B(3), 162–175 (2010)

    Google Scholar 

  17. S. Crozier, L.K. Forbes, D.M. Doddrell, J. Magn. Reson. 107(1), 126–128 (1994)

    Article  ADS  Google Scholar 

  18. M. Zhu, L. Xia, F. Liu, S. Crozier, IEEE Trans. Magn. 44(8), 2035–2041 (2008)

    Article  ADS  Google Scholar 

  19. Y. Wang, F. Liu, X. Zhou, S. Crozier, J. Magn. Reson. 278, 88–95 (2017)

    Article  ADS  Google Scholar 

  20. E.C. Wong, A. Jesmanowicz, J.S. Hyde, Magn. Reson. Med. 21(1), 39–48 (1991)

    Article  Google Scholar 

  21. X. Du et al., IEEE Trans. Appl. Supercond. 22(3), 4402004 (2012)

    Article  MathSciNet  Google Scholar 

  22. P. Zhang, Y. Shia, W. Wang, Y. Wang, Technol. Health. Care. 26(7), 119–132 (2018)

    Article  Google Scholar 

  23. R.A. Waltz, J.L. Morales, J. Nocedal, D. Orban, Math. Program. 107(3), 391–408 (2006)

    Article  MathSciNet  Google Scholar 

  24. Y. Wang, X. Xin, F. Liu, S. Crozier, IEEE Trans. Biomed. Eng. 65(4), 911–920 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52077023), Chongqing Municipal Natural Science Foundation (No. cstc2020jcyj-msxmX0340), and the Fundamental Research Funds for the Central Universities (No. 2018CDJDDQ0017, 2019CDYGYB001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, L., Kong, X., Wu, J. et al. A Smoothly-Connected Crescent Transverse Gradient Coil Design for 50mT MRI System. Appl Magn Reson 52, 649–660 (2021). https://doi.org/10.1007/s00723-021-01330-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01330-5

Navigation