Skip to main content
Log in

Estimating the MRI Contrasting Agents Effect on Water Permeability of Plant Cell Membranes Using the 1H NMR Gradient Technique

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The water permeability of plant cell membranes is proposed as a sensitive indicator of the physiological effect of contrasting agents on the cell membranes for MRI studies. Experimentally the estimation of the effect of contrasting agents on cell membrane permeability can be performed by registering the transmembrane water transfer intensity in plant roots (used as phantoms) by applying spin-echo gradient 1H NMR methods. On the maize root phantom the decrease in the effective water permeability coefficient by an order of magnitude under the influence of gadopentetate (Gd-DTPA) and by half an order of magnitude for cyclomang (Mn-DCTA) is demonstrated. The effect of decrease is associated with changes in the root cell osmotic potential. The more significant decrease in the case of (Gd-DTPA) is explained by blocking of ion channels by gadolinium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. McRobbie, E.A. Moore, M.J. Graves, M. Prince, MRI from Picture to Proton (University Press, Cambridge, 2004).

    Google Scholar 

  2. N.K. Desai, V.M. Runge, Top Magn. Reson. Imaging 14(5), 360–364 (2003)

    Article  Google Scholar 

  3. P.V. Sergeev, V.O. Panov, A.I. Volobuev, N.L. Shimanovsky, Meditsinskaya Vizualizatsija 3, 104–110 (2005). (in Russian)

    Google Scholar 

  4. N.L. Shimanovsky, Diagnosticheskaya i Interventcionnaya Radiologiya 3(1), 5–15 (2009). (in Russian)

    Google Scholar 

  5. D. Fornasiero, J.C. Bellen, R.J. Baker, B.E. Chatterton, Invest. Radiol. 22(4), 322–327 (1987)

    Article  Google Scholar 

  6. B. Elmstehl, U. Nyman, P. Leander, K. Golman, C.-M. Chai, D. Grant et al., Radiology 247(1), 88–97 (2008)

    Article  Google Scholar 

  7. R.C. Semelka, T.K.G. Helmberger, Radiology 218(1), 27–34 (2001)

    Article  Google Scholar 

  8. AYu. Letyagin, K.N. Sorokina, T.G. Tolstikova, N.A. Zhukova, N.A. Popova, E.Y. Fursovau et al., Bulleten Eksperimentalnoi Biologii i Meditsini 143(2), 202–205 (2007). (in Russian)

    Google Scholar 

  9. A.D. Elster, Eur. Radiol. 7(Suppl. 5), 276–280 (1997)

    Article  Google Scholar 

  10. B. Gallez, C. Baudelet, M. Geurts, J. Adline, N. Delzenne, Chem. Res. Toxicol. 10(4), 360–363 (1997)

    Article  Google Scholar 

  11. A.F. Caseiro, Meditsinskaya Vizualizatsija 2, 108–113 (2001). (in Russian)

    Google Scholar 

  12. VYu. Usov, M.L. Belyanin, OYu. Borodin, A.I. Bezlepkin, K.N. Sorokina, T.A. Bahmet’yeva et al., Meditsinskaya Vizualizatsija 4, 134–142 (2007). (in Russian)

    Google Scholar 

  13. A.A. Churin, G.V. Karpova, T.I. Fomina, T.V. Vetoshkina, TYu. Dubskaya, O.L. Voronova et al., Experimentalnaya Klinicheskaya Farmakologiya 71(4), 49–52 (2008). (in Russian)

    Google Scholar 

  14. VYu. Usov, M.L. Belyanin, G.V. Karpova, OYu. Borodin, V.D. Filimonov, Experimentalnaya Klinicheskaya Farmakologiya 71(4), 41–46 (2008). (in Russian)

    Google Scholar 

  15. D.H. Carr, J. Brown, G.M. Bydder, R.E. Steiner, H.J. Weinmann, U. Speck, A.S. Hall, I.R. Young, Am. J. Radiol. 143(2), 215–224 (1984)

    Google Scholar 

  16. A.D. Elster, D.M. Moody, Radiology 177(3), 627–632 (1990)

    Article  Google Scholar 

  17. S. Huber, R. Muthupillai, B. Cheong, J.H. Wible, D. Shah, P. Woodard et al., J. Magn. Reson. Imag. 28(6), 1368–1378 (2008)

    Article  Google Scholar 

  18. D. Kadiyala, D.A. Roer, M.A. Perazella, Am. J. Kidney Dis. 53(1), 133–137 (2009)

    Article  Google Scholar 

  19. J. Kay, Ann. Rheum. Dis. 67(Suppl 3), 66–69 (2008)

    Article  Google Scholar 

  20. M.A. Perazella, Curr. Drug. Saf. 3(1), 67–75 (2008)

    Article  Google Scholar 

  21. A. Natanzon, A.H. Aletras, L.Y. Hsu, A.E. Arai, MR Imaging Radiol. 236, 859–866 (2005)

    Google Scholar 

  22. VYu. Usov, A.A. Churin, M.L. Belyanin, OYu. Borodin, V.D. Filimonov, A.I. Bezlepkin, Meditsinskaya Vizualizatsija 5, 121–132 (2009). (in Russian)

    Google Scholar 

  23. E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288–292 (1965)

    Article  ADS  Google Scholar 

  24. J.E. Tanner, E.O. Stejskal, J. Chem. Phys. 49, 1768–1777 (1968)

    Article  ADS  Google Scholar 

  25. R. Valiullin, V.D. Skirda, J. Chem. Phys. 114, 452–458 (2001)

    Article  ADS  Google Scholar 

  26. R. Valiullin, V.D. Skirda, R. Kimmich, S. Stapf, Phys. Rev. E 55, 2664–2671 (1997)

    Article  ADS  Google Scholar 

  27. F. Crick, Nature 225, 420–422 (1970)

    Article  ADS  Google Scholar 

  28. A.W. Robards, D.T. Clarkson, The role of plasmodesmata in transport of water and nutrients across roots, in Itercellular Communication in Plants: Studies on Plasmodesmata. (Springer, Heidelberg, 1976), pp. 181–202

    Chapter  Google Scholar 

  29. A.I. Maklakov, V.D. Skirda, N.F. Fatkullin, Self-Diffusion in Polymer Solutions and Melts (Kazan University Press, Kazan, 1987).

    Google Scholar 

  30. M.D. Hurlimann, K.G. Helmer, T.M. de Swiet, P.N. Sen, C.H. Sotak, J. Magn. Reson. 113, 260 (1995)

    Article  ADS  Google Scholar 

  31. P.T. Callaghan, S.L. Codd, Magn. Reson. Imag. 16, 471 (1998)

    Article  Google Scholar 

  32. T.A. Sibgatullin, F.J. Vergeldt, E. Gerkema, H. Van As, Eur. Biophys. J. 39, 699–710 (2010)

    Article  Google Scholar 

  33. I.A. Avilova, A.V. Smolina, A.I. Kotelnikov, R.A. Kotelnikova, V.V. Loskutov, V.I. Volkov, Appl. Magn. Reson. 47(3), 335–347 (2016)

    Article  Google Scholar 

  34. K.-J. Suh, Y.-S. Hong, V.D. Skirda, V.I. Volkov, C.-Y. Lee, C.-H. Lee, Biophys. Chem. 104, 121–130 (2003)

    Article  Google Scholar 

  35. C.-H. Cho, Y.-S. Hong, K. Kang, V.I. Volkov, V. Skirda, C.-Y. Lee, C.-H. Lee, Magn. Reson. Imaging 21, 1009–1017 (2003)

    Article  Google Scholar 

  36. J.E. Tanner, J. Chem. Phys. 52, 2523–2526 (1970)

    Article  ADS  Google Scholar 

  37. R.L. Cooper, D.B. Chang, A.C. Young, C.J. Martin, B. Ancker-Johnson, Biophys. J. 14, 161–177 (1974)

    Article  Google Scholar 

  38. A.V. Anisimov, S. Ratković, Water Transport in Plants: Determination by Pulsed NMR (Nauka, Moskva, 1992). (in Russian)

    Google Scholar 

  39. R.G. Pautler, Biological applications of manganese-enhanced magnetic resonance imaging . Methods Mol. Med. 124, 365–386 (2006)

    Google Scholar 

  40. C.E. Morris, J. Membr. Biol. 113, 93–107 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Usov V.S. for attention and help during the study. This research was performed at financial support from the government assignment for FRC Kazan Scientific Center of RAS.

Author information

Authors and Affiliations

Authors

Contributions

AV—conceptualization, experiment design. MA—sample preparation and conducting NMR experiments.

Corresponding author

Correspondence to Maksim Suslov.

Ethics declarations

Conflict of interest

AA, MS have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, A., Suslov, M. Estimating the MRI Contrasting Agents Effect on Water Permeability of Plant Cell Membranes Using the 1H NMR Gradient Technique. Appl Magn Reson 52, 235–246 (2021). https://doi.org/10.1007/s00723-021-01313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01313-6

Navigation