Abstract
Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR10g of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation.
This is a preview of subscription content, access via your institution.










Data Availability
Yes (We will share them if needed).
Code Availability
Yes (We will share them if needed).
References
- 1.
S.K. Pakin, J. Xu, M.E. Schweitzer, R.R. Regatte, Magn. Reson. Med. 56(3), 563–571 (2006)
- 2.
A. Watts, R.W. Stobbe, C. Beaulieu, Magn. Reson. Med. 66(3), 697–705 (2011)
- 3.
J. Jin, E. Weber, A. Destruel, K. O’Brien, B. Henin, C. Engstrom, S. Crozier, Magn. Reson. Med. 79(3), 1804–1816 (2018)
- 4.
V. Gagliardi, A. Retico, L. Biagi, G. Aringhieri, V. Zampa, M.R. Symms, G. Tiberi, M. Tosetti, in Proceedings of the IEEE International Symposium on Medical Measurements and Applications (Rome, Italy, 11-13 June 2018) https://doi.org/10.1109/MeMeA.2018.8438709
- 5.
U. Katscher, T. Voigt, C. Findeklee, P. Vernickel, K. Nehrke, O. Doessel, IEEE Trans. Med. Imag. 28(9), 1365–1374 (2009)
- 6.
U. Katscher, C. Findeklee, T. Voigt, Magn. Reson. Med. 68(6), 1911–1918 (2012)
- 7.
H. Homann, I. Graesslin, H. Eggers, K. Nehrke, P. Vernickel, U. Katscher, O. Dössel, P. Börnert, Magn. Reson. Mater. Phy. 25(3), 193–204 (2012)
- 8.
M. Murbach, E. Neufeld, E. Cabot, E. Zastrow, J. Córcoles, W. Kainz, N. Kuster, Magn. Reson. Med. 76(3), 986–997 (2016)
- 9.
V. Hartwig, G. Giovannetti, N. Vanello, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 38(3), 337–348 (2010)
- 10.
J. Jin, F. Liu, E. Weber, S. Crozier, Phys. Med. Biol. 57(24), 8153–8171 (2012)
- 11.
T. Voigt, H. Homann, U. Katscher, O. Doessel, Magn. Reson. Med. 68(4), 1117–1126 (2012)
- 12.
F.F.J. Simonis, A.J.E. Raaijmakers, J.J.W. Lagendijk, C.A.T. van den Berg, Magn. Reson. Med. 77(4), 1691–1700 (2017)
- 13.
M.S. Mallikarjunaswamy, M.S. Holi, R. Raman, J. Med. Imag. Health In. 5(3), 552–560 (2015)
- 14.
C.N. Öztürk, S. Albayrak, Comput. Biol. Med. 72, 90–107 (2016)
- 15.
J. Tang, S. Millington, S.T. Acton, J. Crandall, S. Hurwitz, IEEE Trans. Biomed. Eng. 53(5), 896–907 (2006)
- 16.
J. Fripp, S. Crozier, S.K. Warfield, S. Ourselin, IEEE Trans. Med. Imag. 29(1), 55–64 (2010)
- 17.
T.G. Williams, A.P. Holmes, J.C. Waterton, R.A. Maciewicz, C.E. Hutchinson, R.J. Moots, A.F. Nash, C.J. Taylor, IEEE Trans. Med. Imag. 29(8), 1541–1559 (2010)
- 18.
J.G. Tamez-Peña, J. Farber, P.C. Gonzalez, E. Schreyer, E. Schneider, S. Totterman, IEEE Trans. Biomed. Eng. 59(4), 1177–1186 (2012)
- 19.
L. Shan, C. Zach, C. Charles, M. Niethammer, Med. Image Anal. 18(7), 1233–1246 (2014)
- 20.
K. Zhang, W. Lu, P. Marziliano, Magn. Reson. Imaging. 31(10), 1731–1743 (2013)
- 21.
P. Wang, X. He, Y. Li, X. Zhu, W. Chen, M. Qiu, J. Med. Imag. Health In. 6(4), 948–956 (2016)
- 22.
N. Tajbakhsh, J.Y. Shin, S.R. Gurudu, R.T. Hurst, C.B. Kendall, M.B. Gotway, J. Liang, IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)
- 23.
H. Greenspan, B. Van Ginneken, R.M. Summers, IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)
- 24.
O. Ronneberger, P. Fischer, T. Brox, The 18th international conference on medical image computing and computer assisted interventions (MICCAI 2015, Munich, Germany, 2015) 234–241 (2015)
- 25.
F. Liu, Z. Zhou, H. Jang, A. Samsonov, G. Zhao, R. Kijowski, Magn. Reson. Med. 79(4), 2379–2391 (2018)
- 26.
Z. Zhou, G. Zhao, R. Kijowski, F. Liu, Magn. Reson. Med. 80(6), 2759–2770 (2018)
- 27.
B. Norman, V. Pedoia, S. Majumdar, Radiology 288(1), 177–185 (2018)
- 28.
A. Tack, A. Mukhopadhyay, S. Zachow, Osteoarthr. Cartilage 26(5), 680–688 (2018)
- 29.
F. Ambellana, A. Tack, M. Ehlke, S. Zachow, Med. Image Anal. 52, 109–118 (2019)
- 30.
E.A. Rashed, J. Gomez-Tames, A. Hirata, NeuroImage. 202(15), 116132 (2019). (1–16)
- 31.
E.A. Rashed, Y.L. Diao, A. Hirata, Phys. Med. Biol. 65, 6 (2020)
- 32.
E.F. Meliadò, A.J.E. Raaijmakers, A. Srizzi, B.R. Steensma, M. Maspero, M.H.F. Savenije, P.R. Luijten, C.A.T. van den Berg, Magn. Reson. Med. 83(2), 695–711 (2019)
- 33.
H. Homann, P. Börnert, H. Eggers, K. Nehrke, O. Dössel, I. Graesslin, Magn Reson Med. 66(6), 1767–1776 (2011)
- 34.
A. Christ, W. Kainz, E.G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, C. Ji, B. Kiefer, P. Schmitt, H.P. Hollenbach, S. Jianxiang, M. Oberle, D. Szczerba, A. Kam, J.W. Guag, N. Kuster, Phys. Med. Biol. 55(2), N23–N38 (2010)
- 35.
C.M. Collins, M.B. Smith, J Magn Reson Imaging 18(3), 383–388 (2003)
- 36.
Tissue properties in database of IT'IS Foundation. https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/. Accessed 10 Jan 2020
- 37.
S. Wolf, D. Diehl, M. Gebhardt, J. Mallow, O. Speck, Magn. Reson. Med. 69(4), 1157–1168 (2013)
- 38.
D.M. Peterson, C.E. Carruthers, B.L. Wolverton, K. Meister, M. Werner, G.R. Duensing, J.R. Fitzsimmons, Magn. Reson. Med. 42(2), 215–221 (1999)
- 39.
S. Orzada, M.E. Ladd, A.K. Bitz, Magn. Reson. Med. 78(2), 805–811 (2017)
- 40.
V. Badrinarayanan, A. Kendall, R. Cipolla, IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Acknowledgements
This work was supported by the research fund for the top scientific and technological innovation teams from Beijing University of Chemical Technology (No. buctylkjcx06). Many thanks are due to Professor Paul Glover of Sir Peter Mansfield Imaging Centre, the University of Nottingham, for his kind help with coil modeling and electromagnetic simulation.
Funding
This work was supported by the research fund for the top scientific and technological innovation teams from Beijing University of Chemical Technology (No. buctylkjcx06).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
No.
Ethics Approval
This research was conducted with the approval of the Institutional Review Board of the Zhangjiakou Charity Hospital (Hebei, China).
Consent to Participate
All participants signed an informed consent form.
Consent to Publication
All authors agree the publication of this research.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xiao, L., Zhou, H., Chen, N. et al. Architecture of Multiple Convolutional Neural Networks to Construct a Subject-Specific Knee Model for Estimating Local Specific Absorption Rate. Appl Magn Reson (2020). https://doi.org/10.1007/s00723-020-01301-2
Received:
Revised:
Accepted:
Published: