Skip to main content
Log in

Parallel-Mode EPR of Atomic Hydrogen Encapsulated in POSS Cages

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In a typical EPR experiment, the transitions require that the static magnetic field \(B_0\) is oriented perpendicular to the microwave field \(B_1\) (perpendicular mode). This is determined by the transition rules either in the classical or in the quantum mechanical description. However, there are cases where EPR transitions are observed when \(B_0\) is oriented parallel to \(B_1\) (parallel mode). Quite numerous studies can be found in the literature where EPR transitions in both modes (dual-mode EPR) are feasible. In the majority of cases, dual-mode EPR studies are typically applied in \(S>1/2\) systems where non-zero transition probabilities for the parallel mode are the result of the state mixing provided by the zero-field splitting interaction. On the other hand, the observation of parallel-mode EPR signals in \(S=1/2\) systems becomes feasible when strong hyperfine interaction between the electronic and nuclear spin is present, as has been theoretically predicted for the hydrogen atom having a hyperfine coupling constant of \(A_0=1420\) MHz (Weil in Concepts Magn Reson Part A 28:331, 2006). Herein, we report the first dual-mode X-band EPR experiments of hydrogen atom (both isotopes \(^1\)H and \(^2\)H) encapsulated in polyhedral oligomeric silsesquioxane cages. We extend the theory to the case of deuterium and we extract analytical formulas for transition probabilities. For the forbidden transitions, this study revealed a first-order dependence of resonance fields on the nuclear g-factor, \(g_{\mathrm{n}}\), and the existence of a clock transition with \(f=307\) MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.P. Hendrich, P.G. Debrunner, J. Magn. Reson. 78, 133 (1988)

    ADS  Google Scholar 

  2. M. Hendrich, P. Debrunner, Biophys. J. 56, 489 (1989)

    Article  Google Scholar 

  3. B.S. Pierce, T.E. Elgren, M.P. Hendrich, J. Am. Chem. Soc. 125, 8748 (2003)

    Article  Google Scholar 

  4. T.D. Tzima, G. Sioros, C. Duboc, D. Kovala-Demertzi, V.S. Melissas, Y. Sanakis, Polyhedron 28, 3257 (2009)

    Article  Google Scholar 

  5. A. Bencini, D. Gatteschi, EPR of Exchange Coupled Systems (Springer, Heidelberg, 1990)

    Google Scholar 

  6. A. Galani, E.K. Efthimiadou, G. Mitrikas, Y. Sanakis, V. Psycharis, C. Raptopoulou, G. Kordas, A. Karaliota, Inorg. Chim. Acta 423, 207 (2014)

    Article  Google Scholar 

  7. L. Mathivathanan, A.K. Boudalis, P. Turek, M. Pissas, Y. Sanakis, R.G. Raptis, Phys. Chem. Chem. Phys. 20, 17234 (2018)

    Article  Google Scholar 

  8. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  9. J.A. Weil, Concepts Magn. Reson. Part A 28, 331 (2006)

    Article  Google Scholar 

  10. R.T. Harding, S. Zhou, J. Zhou, T. Lindvall, W.K. Myers, A. Ardavan, G.A.D. Briggs, K. Porfyrakis, E.A. Laird, Phys. Rev. Lett. 119, 140801 (2017)

    Article  ADS  Google Scholar 

  11. J. Isoya, J. Weil, P. Davis, J. Phys. Chem. Solids 44, 335 (1983)

    Article  ADS  Google Scholar 

  12. K. Nakashima, J. Yamauchi, J. Am. Chem. Soc. 127, 1606 (2005)

    Article  Google Scholar 

  13. D.Y. Koh, H. Kang, J. Park, W. Shin, H. Lee, J. Am. Chem. Soc. 134, 5560 (2012)

    Article  Google Scholar 

  14. S.N. Foner, E.L. Cochran, V.A. Bowers, C.K. Jen, J. Chem. Phys. 32, 963 (1960)

    Article  ADS  Google Scholar 

  15. S. Sheludiakov, J. Ahokas, J. Järvinen, L. Lehtonen, S. Vasiliev, Y.A. Dmitriev, D.M. Lee, V.V. Khmelenko, Phys. Rev. B 97, 104108 (2018)

    Article  ADS  Google Scholar 

  16. M. Paech, R. Stoesser, J. Phys. Chem. A 101(44), 8360 (1997)

    Article  Google Scholar 

  17. Y. Matsuda, Appl. Magn. Reson. 23(3–4), 469 (2003)

    Article  Google Scholar 

  18. R.S. Schoenfeld, W. Harneit, M. Paech, Phys. Status Solidi B 243(13), 3008 (2006)

    Article  ADS  Google Scholar 

  19. B. Gross, H. Dilger, R. Scheuermann, M. Paech, E. Roduner, J. Phys. Chem. A 105(44), 10012 (2001)

    Article  Google Scholar 

  20. N. Weiden, M. Paech, K. Dinse, Appl. Magn. Reson. 21, 507 (2001)

    Article  Google Scholar 

  21. G. Mitrikas, Phys. Chem. Chem. Phys. 14, 3782 (2012)

    Article  Google Scholar 

  22. G. Mitrikas, E.K. Efthimiadou, G. Kordas, Phys. Chem. Chem. Phys. 16, 2378 (2014)

    Article  Google Scholar 

  23. G. Mitrikas, S. Menenakou, Phys. Chem. Chem. Phys. 22, 15751 (2020)

    Article  Google Scholar 

  24. R.S. Dickson, J.A. Weil, Am. J. Phys. 59, 125 (1991)

    Article  ADS  Google Scholar 

  25. S. Stoll, A. Ozarowski, R.D. Britt, A. Angerhofer, J. Magn. Reson. 207, 158 (2010)

    Article  ADS  Google Scholar 

  26. M.H. Mohammady, G.W. Morley, T.S. Monteiro, Phys. Rev. Lett. 105, 067602 (2010)

    Article  ADS  Google Scholar 

  27. S.J. Balian, M.B.A. Kunze, M.H. Mohammady, G.W. Morley, W.M. Witzel, C.W.M. Kay, T.S. Monteiro, Phys. Rev. B 86, 104428 (2012)

    Article  ADS  Google Scholar 

  28. G. Wolfowicz, A.M. Tyryshkin, R.E. George, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, M.L.W. Thewalt, S.A. Lyon, J.J.L. Morton, Nat. Nanotechnol. 8, 561 (2013)

    Article  ADS  Google Scholar 

  29. S.J. Balian, G. Wolfowicz, J.J.L. Morton, T.S. Monteiro, Phys. Rev. B 89, 045403 (2014)

    Article  ADS  Google Scholar 

  30. M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño, E. Coronado, S. Hill, Nature 531, 348 (2016)

    Article  ADS  Google Scholar 

  31. Y. Hagiwara, A. Shimojima, K. Kuroda, Chem. Mater. 20(3), 1147 (2008)

    Article  Google Scholar 

  32. S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42 (2006)

    Article  ADS  Google Scholar 

  33. J.A. Weil, D.F. Howarth, Appl. Magn. Reson. 38(1), 85 (2010)

    Article  Google Scholar 

  34. F.J. Adrian, J. Chem. Phys. 32(4), 972 (1960)

    Article  ADS  Google Scholar 

  35. C.J. White, A.H. Hajimiri, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (2005), pp. 940–946. https://doi.org/10.1109/FREQ.2005.1574061

  36. A.M. Tyryshkin, J.J.L. Morton, S.C. Benjamin, A. Ardavan, G.A.D. Briggs, J.W. Ager, S.A. Lyon, J. Phys. Condens. Matter 18, S783 (2006)

    Article  ADS  Google Scholar 

  37. R.E. George, W. Witzel, H. Riemann, N.V. Abrosimov, N. Nötzel, M.L.W. Thewalt, J.J.L. Morton, Phys. Rev. Lett. 105, 067601 (2010)

    Article  ADS  Google Scholar 

  38. M.H. Mohammady, G.W. Morley, A. Nazir, T.S. Monteiro, Phys. Rev. B 85, 094404 (2012)

    Article  ADS  Google Scholar 

  39. G.W. Morley, P. Lueders, M.H. Mohammady, S.J. Balian, G. Aeppli, C.W.M. Kay, W.M. Witzel, G. Jeschke, T.S. Monteiro, Nat. Mater. 12, 103 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support of this work by (a) the project MIS 5002567, implemented under the “Action for the Strategic Development on the Research and Technological Sector” and (b) the project MIS 5002772, “National Infrastructure in Nanotechnology, Advanced Materials and Micro-/Nanoelectronics” which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”. Both projects are funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). The authors are also indebted Dr. Raanan Carmieli, Weizmann Institute of Science, for providing the deuterated chlorosilane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mitrikas.

Additional information

This work is dedicated to Prof. Dante Gatteschi on the occasion of his 75th birthday in recognition of his outstanding contribution in Electron Paramagnetic Resonance Spectroscopy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrikas, G., Sanakis, Y. & Ioannidis, N. Parallel-Mode EPR of Atomic Hydrogen Encapsulated in POSS Cages. Appl Magn Reson 51, 1451–1466 (2020). https://doi.org/10.1007/s00723-020-01263-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01263-5

Navigation