Skip to main content
Log in

Rapid Scan EPR Imaging as a Tool for Magnetic Field Mapping

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Functional four-dimensional spectral–spatial electron paramagnetic imaging (EPRI) is routinely used in biomedical research. Positions and widths of EPR lines in the spectral dimension report oxygen partial pressure, pH, and other important parameters of the tissue microenvironment. Images are measured in the homogeneous external magnetic field. An application of EPRI is proposed in which the field is perturbed by a magnetized object. A proof-of-concept imaging experiment was conducted, which permitted visualization of the magnetic field created by this object. A single-line lithium octa-n-butoxynaphthalocyanine spin probe was used in the experiment. The spectral position of the EPR line directly measured the strength of the perturbation field with spatial resolution. A three-dimensional magnetic field map was reconstructed as a result. Several applications of this technology can be anticipated. First is EPRI/MPI co-registration, where MPI is an emerging magnetic particle imaging technique. Second, EPRI can be an alternative to magnetic field cameras that are used for the development of high-end permanent magnets and their assemblies, consumer electronics, and industrial sensors. Besides the high resolution of magnetic field readings, EPR probes can be placed in the internal areas of various assemblies that are not accessible by the standard sensors. Third, EPRI can be used to develop systems for magnetic manipulation of cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Magnetic field map can be provided as a MATLAB 3D structure.

Code Availability

Not applicable.

References

  1. O. Tseytlin, P. Guggilapu, A.A. Bobko, H. AlAhmad, X. Xu, B. Epel, R. O'Connell, E.H. Hoblitzell, T.D. Eubank, V.V. Khramtsov, B. Driesschaert, E. Kazkaz, M. Tseytlin, J. Magn. Reson. 305, 94 (2019)

    ADS  Google Scholar 

  2. M. Poncelet, B. Driesschaert, O. Tseytlin, M. Tseytlin, T.D. Eubank, V.V. Khramtsov, Bioorg. Med. Chem. Lett. 29(14), 1756 (2019)

    Google Scholar 

  3. M.C. Emoto, H. Sato-Akaba, Y. Matsuoka, K.I. Yamada, H.G. Fujii, Neurosci. Lett. 690, 6 (2019)

    Google Scholar 

  4. M. Gonet, B. Epel, H.J. Halpern, M. Elas, Cell Biochem. Biophys. 77(3), 187 (2019)

    Google Scholar 

  5. D.A. Komarov, Y. Ichikawa, K. Yamamoto, N. Stewart, S. Matsumoto, H. Yasui, I.A. Kirilyuk, V.V. Khramtsov, O. Inanami, H. Hirata, Anal. Chem. 90(23), 13938 (2018)

    Google Scholar 

  6. H. Yasui, T. Kawai, S. Matsumoto, K. Saito, N. Devasahayam, J.B. Mitchell, K. Camphausen, O. Inanami, M.C. Krishna, Free Radic. Res. 51(9–10), 861 (2017)

    Google Scholar 

  7. B. Epel, M. Krzykawska-Serda, V. Tormyshev, M.C. Maggio, E.D. Barth, C.A. Pelizzari, H.J. Halpern, Cell Biochem. Biophys. 75(3–4), 295 (2017)

    Google Scholar 

  8. H. Kubota, D.A. Komarov, H. Yasui, S. Matsumoto, O. Inanami, I.A. Kirilyuk, V.V. Khramtsov, H. Hirata, MAGMA 30(3), 291 (2017)

    Google Scholar 

  9. B. Epel, S.V. Sundramoorthy, M. Krzykawska-Serda, M.C. Maggio, M. Tseytlin, G.R. Eaton, S.S. Eaton, G.M. Rosen, J.P.Y. Kao, H.J. Halpern, J. Magn. Reson. 276, 31 (2017)

    ADS  Google Scholar 

  10. X. Wang, M. Emoto, Y. Miyake, K. Itto, S. Xu, H. Fujii, H. Hirata, H. Arimoto, Bioorg. Med. Chem. Lett. 26(20), 4947 (2016)

    Google Scholar 

  11. M. Hashem, M. Weiler-Sagie, P. Kuppusamy, G. Neufeld, M. Neeman, A. Blank, J. Magn. Reson. 256, 77 (2015)

    ADS  Google Scholar 

  12. H.B. Elajaili, J.R. Biller, M. Tseitlin, I. Dhimitruka, V.V. Khramtsov, S.S. Eaton, G.R. Eaton, Magn. Reson. Chem. 53(4), 280 (2015)

    Google Scholar 

  13. M. Elas, J.M. Magwood, B. Butler, C. Li, R. Wardak, R. DeVries, E.D. Barth, B. Epel, S. Rubinstein, C.A. Pelizzari, R.R. Weichselbaum, H.J. Halpern, Cancer Res. 73(17), 5328 (2013)

    Google Scholar 

  14. V.V. Khramtsov, J.L. Zweier, Functional in vivo EPR Spectroscopy and Imaging Using Nitroxide and Trityl Radicals, in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, ed. by R. Hicks (John Wiley and Sons Ltd, Chichester, 2010), pp. 537–566

    Google Scholar 

  15. S. Kishimoto, K.I. Matsumoto, K. Saito, A. Enomoto, S. Matsumoto, J.B. Mitchell, N. Devasahayam, M.C. Krishna, Antioxid. Redox Signal 28(15), 1378 (2018)

    Google Scholar 

  16. V.V. Khramtsov, A.A. Bobko, M. Tseytlin, B. Driesschaert, Anal. Chem. 89(9), 4758 (2017)

    Google Scholar 

  17. B. Epel, M.K. Bowman, C. Mailer, H.J. Halpern, Magn. Reson. Med. 72(2), 362 (2014)

    Google Scholar 

  18. G. Redler, M. Elas, B. Epel, E.D. Barth, H.J. Halpern, Adv. Exp. Med. Biol. 789, 399 (2013)

    Google Scholar 

  19. T. Yokoyama, A. Taguchi, H. Kubota, N.J. Stewart, S. Matsumoto, I.A. Kirilyuk, H. Hirata, J. Magn. Reson. 305, 122 (2019)

    ADS  Google Scholar 

  20. H. Sato-Akaba, M.C. Emoto, H. Hirata, H.G. Fujii, J. Magn. Reson. 284, 48 (2017)

    ADS  Google Scholar 

  21. J. Goodwin, K. Yachi, M. Nagane, H. Yasui, Y. Miyake, O. Inanami, A.A. Bobko, V.V. Khramtsov, H. Hirata, NMR Biomed. 27(4), 453 (2014)

    Google Scholar 

  22. D.A. Komarov, H. Hirata, J. Magn. Reson. 281, 44 (2017)

    ADS  Google Scholar 

  23. M.M. Maltempo, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 72(3), 449 (1987)

    ADS  Google Scholar 

  24. U. Sanzhaeva, X. Xu, P. Guggilapu, M. Tseytlin, V.V. Khramtsov, B. Driesschaert, Angew. Chem. Int. Ed. Engl. 57(36), 11701 (2018)

    Google Scholar 

  25. J. Moser, K. Lips, M. Tseytlin, G.R. Eaton, S.S. Eaton, A. Schnegg, J. Magn. Reson. 281, 17 (2017)

    ADS  Google Scholar 

  26. S.S. Eaton, Y. Shi, L. Woodcock, L.A. Buchanan, J. McPeak, R.W. Quine, G.A. Rinard, B. Epel, H.J. Halpern, G.R. Eaton, J. Magn. Reson. 280, 140 (2017)

    ADS  Google Scholar 

  27. M. Tseytlin, B. Epel, S. Sundramoorthy, D. Tipikin, H.J. Halpern, J. Magn. Reson. 272, 91 (2016)

    ADS  Google Scholar 

  28. J.R. Biller, D.G. Mitchell, M. Tseytlin, H. Elajaili, G.A. Rinard, R.W. Quine, S.S. Eaton, G.R. Eaton, J. Vis. Exp. 115, 54068 (2016)

    Google Scholar 

  29. Z. Yu, R.W. Quine, G.A. Rinard, M. Tseytlin, H. Elajaili, V. Kathirvelu, L.J. Clouston, P.J. Boratynski, A. Rajca, R. Stein, H. McHaourab, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 247, 67 (2014)

    ADS  Google Scholar 

  30. D.G. Mitchell, M. Tseitlin, R.W. Quine, V. Meyer, M.E. Newton, A. Schnegg, B. George, S.S. Eaton, G.R. Eaton, Mol. Phys. 111, 2664 (2013)

    ADS  Google Scholar 

  31. D.G. Mitchell, G.M. Rosen, M. Tseitlin, B. Symmes, S.S. Eaton, G.R. Eaton, Biophys. J. 105(2), 338 (2013)

    ADS  Google Scholar 

  32. H. Sato-Akaba, M. Tseytlin, J. Magn. Reson. 304, 42 (2019)

    ADS  Google Scholar 

  33. M. Tseytlin, A.V. Stolin, P. Guggilapu, A.A. Bobko, V.V. Khramtsov, O. Tseytlin, R.R. Raylman, Phys. Med. Biol. 63(10), 105010 (2018)

    Google Scholar 

  34. O. Tseytlin, A. Bobko, M. Tseytlin, in Proceedings of the 59th Annual Rocky Mountain Conference on Magnetic Resonance, (Snowbird, Utah, United States, 22-27 July 2018), p. 87

  35. J.W.M. Bulte, Adv. Drug Deliv. Rev. 138, 293 (2019)

    Google Scholar 

  36. F. Leonard, B. Godin, Methods Mol. Biol. 1406, 239 (2016)

    Google Scholar 

  37. H. Hou, N. Khan, S. Gohain, M.L. Kuppusamy, P. Kuppusamy, Biomed. Microdevices 20(2), 29 (2018)

    Google Scholar 

  38. J. Frank, D. Gundel, S. Drescher, O. Thews, K. Mader, Free Radic. Biol. Med. 89, 741 (2015)

    Google Scholar 

  39. M.M. Kmiec, D. Tse, J.M. Mast, R. Ahmad, P. Kuppusamy, Biomed. Microdevices 21(3), 71 (2019)

    Google Scholar 

  40. H. Hou, N. Khan, P. Kuppusamy, Adv. Exp. Med. Biol. 977, 313 (2017)

    Google Scholar 

  41. L.A. Jarvis, B.B. Williams, P.E. Schaner, E.Y. Chen, C.V. Angeles, H. Hou, W. Schreiber, V.A. Wood, A.B. Flood, H.M. Swartz, P. Kuppusamy, in Proceedings of the Xth International Workshop on EPR in Biology and Medicine (Krakow, Poland, 2-6 October 2016), p.34

  42. M. Tseytlin, J. Magn. Reson. 281, 272 (2017)

    ADS  Google Scholar 

  43. Z. Yu, T. Liu, H. Elajaili, G.A. Rinard, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 258, 58 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants R01-EB023888, U54GM104942, and P20GM121322. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

This work was supported by the National Institute of Health (NIH) grants R01-EB023888, U54GM104942, and P20GM121322. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Oxana Tseytlin: Instrumentation development; Sample preparation; Imaging data acquisition.

Andrey Bobko: EPR probe synthesis.

Mark Tseytlin: Idea; Image reconstruction and processing.

Corresponding author

Correspondence to Mark Tseytlin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseytlin, O., Bobko, A.A. & Tseytlin, M. Rapid Scan EPR Imaging as a Tool for Magnetic Field Mapping. Appl Magn Reson 51, 1117–1124 (2020). https://doi.org/10.1007/s00723-020-01238-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01238-6

Navigation