Skip to main content
Log in

Experimental and Theoretical Study of Emodin Interaction with Phospholipid Bilayer and Linoleic Acid

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

1H NMR technique, optical spectrophotometry and molecular dynamics simulations have been applied to study the effect of the lipid composition on emodin interaction with the lipid bilayer. The special attention was paid on the presence of the unsaturated fatty acid linoleic acid in the lipid bilayer. Emodin (1,3,8‐trihydroxy‐6‐methylanthraquinone) is a natural anthraquinone which shows a wide spectrum of biological activity including anticancer, anti-inflammatory, antiviral, antibacterial, neuroprotective and others. It is assumed that the location of emodin in the lipid membrane is important for its biological activity. It was demonstrated that in the presence of linoleic acid, the pKa value of the emodin significantly increases. Molecular dynamics simulations show that these changes can be associated with the interaction of emodin and linoleic acid inside the bilayer. Also, it was shown that the order of deprotonation positions in the POPC bilayer differs from the deprotonation order in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Lucio, J.L. Lima, S. Reis, Curr. Med. Chem. 17, 1795–1809 (2010). https://www.eurekaselect.com/60389/article. Accessed 26 Apr 2020

  2. X. Dong, J. Fu, X. Yin, S. Cao, X. Li, L. Lin, J. Ni, Phytother. Res. 30, 1207–1218 (2016). https://doi.org/10.1002/ptr.5631

    Article  Google Scholar 

  3. D. Shrimali, M.K. Shanmugam, A.P. Kumar, J. Zhang, B.K.H. Tan, K.S. Ahn, G. Sethi, Cancer Lett. 341, 139–149 (2013). https://doi.org/10.1016/j.canlet.2013.08.023

    Article  Google Scholar 

  4. S. Rahimipour, G. Gescheidt, I. Bilkis, M. Fridkin, L. Weiner, Appl. Magn. Reson. 37, 629–648 (2010). https://doi.org/10.1007/s00723-009-0099-y

    Article  Google Scholar 

  5. A.R. da Cunha, E.L. Duarte, H. Stassen, M.T. Lamy, K. Coutinho, Biophys. Rev. 9, 729–745 (2017). https://doi.org/10.1007/s12551-017-0323-1

    Article  Google Scholar 

  6. D.S. Alves, L. Pérez-Fons, A. Estepa, V. Micol, Biochem. Pharmacol. 68, 549–561 (2004). https://doi.org/10.1016/j.bcp.2004.04.012

    Article  Google Scholar 

  7. X. Yang, W. Sheng, G.Y. Sun, J.C.-M. Lee, Neurochem. Int. 58, 321–329 (2011). https://doi.org/10.1016/j.neuint.2010.12.004

    Article  Google Scholar 

  8. L. Kumar, S. Verma, S. Kumar, D.N. Prasad, A.K. Jain, Artif. Cells Nanomed. Biotechnol. 45, 251–260 (2017). https://doi.org/10.3109/21691401.2016.1146729

  9. Y. Wang, L. Jiang, Q. Shen, J. Shen, Y. Han, H. Zhang, RSC Adv. 7, 41561–41572 (2017). https://doi.org/10.1039/C7RA06088B

    Article  Google Scholar 

  10. M. Ibarguren, D.J. López, P.V. Escribá, Biochim. Biophys. Acta BBA—Biomembr. 2014, 1518–1528 (1838). https://doi.org/10.1016/j.bbamem.2013.12.021

  11. X. Lu, G. He, H. Yu, Q. Ma, S. Shen, U.N. Das, J. Zhejiang Univ. Sci. B. 11, 923–930 (2010). https://doi.org/10.1631/jzus.B1000125

    Article  Google Scholar 

  12. H.L. Kantor, J.H. Prestegard, Biochemistry 14, 1790–1795 (1975). https://doi.org/10.1021/bi00679a035

    Article  Google Scholar 

  13. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX. 1–2, 19–25 (2015). https://doi.org/10.1016/J.SOFTX.2015.06.001

    Article  ADS  Google Scholar 

  14. O. Berger, O. Edholm, F. Jähnig, Biophys. J. 72, 2002–2013 (1997). https://doi.org/10.1016/S0006-3495(97)78845-3

    Article  ADS  Google Scholar 

  15. K.B. Koziara, M. Stroet, A.K. Malde, A.E. Mark, J. Comput. Aided Mol. Des. 28, 221–233 (2014). https://doi.org/10.1007/s10822-014-9713-7

    Article  ADS  Google Scholar 

  16. A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, C. Oostenbrink, A.E. Mark, J. Chem. Theory Comput. 7, 4026–4037 (2011). https://doi.org/10.1021/ct200196m

  17. M. Stroet, B. Caron, K.M. Visscher, D.P. Geerke, A.K. Malde, A.E. Mark, J. Chem. Theory Comput. 14, 5834–5845 (2018). https://doi.org/10.1021/acs.jctc.8b00768

    Article  Google Scholar 

  18. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, Interaction Models for Water in Relation to Protein Hydration (Springer, Dordrecht, 1981), pp. 331–342. https://doi.org/10.1007/978-94-015-7658-1_21.

  19. M.G. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller, G. Groenhof, J. Comput. Chem. 31, 2169–2174 (2010). https://doi.org/10.1002/jcc.21507

    Article  Google Scholar 

  20. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18, 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H

    Article  Google Scholar 

  21. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577–8593 (1995). https://doi.org/10.1063/1.470117

    Article  ADS  Google Scholar 

  22. W.G. Hoover, Phys. Rev. A. 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  ADS  Google Scholar 

  23. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182–7190 (1981). https://doi.org/10.1063/1.328693

    Article  ADS  Google Scholar 

  24. K. Danielsen, D.W. Aksnes, G.W. Francis, Magn. Reson. Chem. 30, 359–360 (1992). https://doi.org/10.1002/mrc.1260300414

    Article  Google Scholar 

  25. I. Bilkis, I. Silman, L. Weiner, Curr. Med. Chem. 25, 5528–5539 (2018). https://doi.org/10.2174/0929867325666180104153848

    Article  Google Scholar 

  26. V. Lev-Goldman, B. Mester, N. Ben-Aroya, Y. Koch, L. Weiner, M. Fridkin, Bioconjug. Chem. 17, 1008–1016 (2006). https://doi.org/10.1021/bc050293r

    Article  Google Scholar 

  27. B. Siewert, H. Stuppner, Phytomedicine 60, 152985 (2019). https://doi.org/10.1016/j.phymed.2019.152985

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Ministry of Science and Education (Projects No. 0304-2017-0009 and 0301-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Selyutina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyutina, O.Y., Kononova, P.A. & Polyakov, N.E. Experimental and Theoretical Study of Emodin Interaction with Phospholipid Bilayer and Linoleic Acid. Appl Magn Reson 51, 951–960 (2020). https://doi.org/10.1007/s00723-020-01233-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01233-x

Navigation