Skip to main content
Log in

Playing with Magnetic Anisotropy in Hexacoordinated Mononuclear Ni(II) Complexes, An Interplay Between Symmetry and Geometry

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The magnetic anisotropy parameters of a hexacoordinate trigonally elongated Ni(II) complex with symmetry close to D3d are measured using field-dependent magnetization and High-Field and High-Frequency EPR spectroscopy (D = + 2.95 cm−1, |E/D| = 0.08 from EPR). Wave function based theoretical calculations reproduce fairly well the EPR experimental data and allows analysing the origin of the magnetic anisotropy of the complex. Calculations on model complexes allows getting insight into the origin of the large increase in the axial magnetic anisotropy (D) when the complex is brought to a prismatic geometry with a symmetry close to D3h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It is worth noting that the model complex with Φ = 60° obtained by turning the twist angle of 1 by 120° keeps the pseudo D3d symmetry as complex 1. We checked that the ZFS parameters of the as obtained model (Φ = 60°) are almost identical (D = 4.2 cm−1, E = 0.16 cm−1 and E/D = 0.037) to those of 1, suggesting that (i) loosing the inversion symmetry does not affect the ZFS parameters and (ii) the model complex with Φ = 60° is a reasonable model for 1. For (Φ = 0°), the model complex has a σh symmetry plane

References

  1. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions (Dover Publications, New York, 1970), pp. 449–455

    Google Scholar 

  2. F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds (Elsevier, Amsterdam, 1992)

    Google Scholar 

  3. D. Gatteschi, L. Sorace, J. Sol, St. Chem. 159, 253 (2001)

    Article  Google Scholar 

  4. J. Mroziński, A. Skorupa, A. Pochaba, Y. Dromzée, M. Verdaguer, E. Goovaerts, H. Varcammen, B. Korybut-Daszkiewicz, J. Mol. Struct. 559, 107 (2001)

    Article  ADS  Google Scholar 

  5. J. Krzystek, J.-H. Park, M.W. Meisel, M.A. Hitchman, H. Stratemeier, L.-C. Brunel, J. Telser, Inorg. Chem. 41, 4478 (2002)

    Article  Google Scholar 

  6. G. Rogez, J.N. Rebilly, A.L. Barra, L. Sorace, G. Blondin, N. Kirchner, M. Duran, J. van Slageren, S. Parsons, L. Ricard, A. Marvilliers, T. Mallah, Angew. Chem. Int. Ed. 44, 1876 (2005)

    Article  Google Scholar 

  7. P.J. Desrochers, J. Telser, S.A. Zvyagin, A. Ozarowski, J. Krzystek, D.A. Vicic, Inorg. Chem. 45, 8930 (2006)

    Article  Google Scholar 

  8. J.N. Rebilly, G. Charron, E. Riviere, R. Guillot, A.L. Barra, M.D. Serrano, J. van Slageren, T. Mallah, Chem. Eur. J. 14, 1169 (2008)

    Article  Google Scholar 

  9. R. Ruamps, R. Maurice, L. Batchelor, M. Boggio-Pasqua, R. Guillot, A.L. Barra, J.J. Liu, E. Bendeif, S. Pillet, S. Hill, T. Mallah, N. Guihery, J. Am. Chem. Soc. 135, 3017 (2013)

    Article  Google Scholar 

  10. D. Schweinfurth, J. Krzystek, I. Schapiro, S. Demeshko, J. Klein, J. Telser, A. Ozarowski, C.Y. Su, F. Meyer, M. Atanasov, F. Neese, B. Sarkar, Inorg. Chem. 52, 6880 (2013)

    Article  Google Scholar 

  11. K.E.R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S.T. Ochsenbein, S. Hill, M. Murrie, Chem. Sci. 6, 6823 (2015)

    Article  Google Scholar 

  12. G. Charron, E. Malkin, G. Rogez, L.J. Batchelor, S. Mazerat, R. Guillot, N. Guihery, A.L. Barra, T. Mallah, H. Bolvin, Chem. Eur. J. 22, 16848 (2016)

    Article  Google Scholar 

  13. R. Yang, L.J. Zompa, Inorg. Chem. 15, 1499 (1976)

    Article  Google Scholar 

  14. R. Stranger, S. C. Wallis, L. R. Gahan, C. H. L. Kennard, K. A. Byriel, J. Chem. Soc. Dalton Trans., 2971–2976 (1992)

  15. A.-L. Barra, L.-C. Brunel, J.B. Robert, Chem. Phys. Lett. 165, 107 (1990)

    Article  ADS  Google Scholar 

  16. S. Mossin, H. Weihe, A.L. Barra, J. Am. Chem. Soc. 124, 8764 (2002)

    Article  Google Scholar 

  17. J. Glerup, H. Weihe, Acta Chem. Scand. 45, 444 (1991)

    Article  Google Scholar 

  18. R. Maurice, R. Bastardis, C.D. Graaf, N. Suaud, T. Mallah, N. Guihéry, J. Chem. Th. Comput. 5, 2977 (2009)

    Article  Google Scholar 

  19. R. Ruamps, L.J. Batchelor, R. Maurice, N. Gogoi, P. Jimenez-Lozano, N. Guihery, C. de Graaf, A.L. Barra, J.P. Sutter, T. Mallah, Chem. Eur. J. 19, 950 (2013)

    Article  Google Scholar 

  20. F. Shao, B. Cahier, N. Guihéry, E. Rivière, R. Guillot, A.-L. Barra, Y. Lan, W. Wernsdorfer, V.E. Campbell, T. Mallah, Chem. Commun. 51, 16475 (2015)

    Article  Google Scholar 

  21. F. El-Khatib, B. Cahier, M. López-Jordà, R. Guillot, E. Rivière, H. Hafez, Z. Saad, J.-J. Girerd, N. Guihéry, T. Mallah, Inorg. Chem. 56, 10655 (2017)

    Article  Google Scholar 

  22. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P. Malrieu, J. Chem. Phys. 114, 10252 (2001)

    Article  ADS  Google Scholar 

  23. C. Angeli, R. Cimiraglia, J.-P. Malrieu, Chem. Phys. Lett. 350, 297 (2001)

    Article  ADS  Google Scholar 

  24. C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 117, 9138 (2002)

    Article  ADS  Google Scholar 

  25. F. Neese, J. Chem. Phys. 122, 034107 (2005)

    Article  ADS  Google Scholar 

  26. G.L. Stoychev, A.A. Auer, F. Neese, J. Chem. Th. Comput. 13, 554 (2017)

    Article  Google Scholar 

  27. F. Neese, J. Comput. Chem. 24, 1740 (2003)

    Article  Google Scholar 

  28. M. Reiher, Theor. Chem. Acc. 116, 241 (2006)

    Article  Google Scholar 

  29. F. Neese, Wiley Interdiscip.Rev. Comput. Mol. Sci. 2, 73 (2012)

    Article  Google Scholar 

  30. A. Bencini, D. Gatteschi, Transition Metal Chemistry, vol. 8 (Dekker, New York, 1982), pp. 1–178

    Google Scholar 

  31. D. Collison, M. Helliwell, V.M. Jones, F.E. Mabbs, E.J.L. McInnes, P.C. Riedi, G.M. Smith, R.G. Pritchard, W.I. Cross, J. Chem. Soc. Farad. Trans. 94, 3019 (1998)

    Article  Google Scholar 

  32. B. Cahier, M. Perfetti, G. Zakhia, D. Naoufal, F. El-Khatib, R. Guillot, E. Riviere, R. Sessoli, A.L. Barra, N. Guihery, T. Mallah, Chem. Eur. J. 23, 3648 (2017)

    Article  Google Scholar 

  33. M. R. Churchill, A. H. Reis, J. Chem. Soc. D: Chem. Commun., 879–880 (1970)

  34. S. Ross, T. Weyhermüller, E. Bill, K. Wieghardt, P. Chaudhuri, Inorg. Chem. 40, 6656 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the CNRS (Centre National de la Recherche Scientifique), the Université Paris-Saclay for financial support. We also thank H. Weihe for provision of the EPR simulation softwares.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalie Guihéry, Anne-Laure Barra or Talal Mallah.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suaud, N., Rogez, G., Rebilly, JN. et al. Playing with Magnetic Anisotropy in Hexacoordinated Mononuclear Ni(II) Complexes, An Interplay Between Symmetry and Geometry. Appl Magn Reson 51, 1215–1231 (2020). https://doi.org/10.1007/s00723-020-01228-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01228-8

Navigation