Skip to main content
Log in

Fine Analysis of the Structure and Dynamics of Vanadyl Complexes Adsorbed on TiO2 (Anatase) Surface: EPR Investigation

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This work continues EPR investigation of photocatalytic systems based on vanadium modified titanium dioxide (anatase) surface containing various concentrations of VO2+ paramagnetic centers (PCs). Three different types of the isolated PCs are revealed on the surface of V–TiO2 nanoparticles and quantitatively characterized. Time-dependent transitions among these PCs were observed and kinetic behavior was described using new theoretical approach and the developed numerical calculation procedure. The slow-process kinetic rate constant has been calculated from EPR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C.-S. Wu, C.-H. Chen, J. Photochem. Photobiol. A: Chemistry 163, 509 (2004)

    Article  Google Scholar 

  2. W.-F. Chen, P. Koshy, L. Adler, C.C. Sorrell, J. Austral. Ceram. Soc. 53, 569 (2017)

    Article  Google Scholar 

  3. S. Liu, T. Xie, Z. Chen, J. Wu, Appl. Surface Sci. 255, 8587 (2009)

    Article  ADS  Google Scholar 

  4. M. Bettinelli, V. Dallacasa, D. Falcomer, P. Fornasiero, V. Gombac, T. Montini, L. Romano, A. Speghini, J. Hazard. Mater. 146, 529 (2007)

    Article  Google Scholar 

  5. H. Khan, D. Berk, J. Sol-Gel Sci. Technol. 68, 180 (2013)

    Article  Google Scholar 

  6. I. Cimieria, H. Poelmanb, J. Ryckaerta, D. Poelman, J. Photochem. Photobiol. A: Chem. 263, 1 (2013)

    Article  Google Scholar 

  7. S. Klosek, D. Raftery, J. Phys. Chem. B 105, 2815 (2001)

    Article  Google Scholar 

  8. K. Bhattacharyya, S. Varma, A.K. Tripathi, S.R. Bharadwaj, A.K. Tyagi, J. Phys. Chem. C 112, 19102 (2008)

    Article  Google Scholar 

  9. J. Zhou, M. Takeuchi, A.K. Ray, M. Anpo, X.S. Zhao, J. Coll. Interface Sci. 311, 497 (2007)

    Article  ADS  Google Scholar 

  10. S.T. Martin, C.L. Morrison, M.R. Hoffmann, J. Phys. Chem. 98, 13695 (1994)

    Article  Google Scholar 

  11. M. Pérez-Nicolás, I. Navarro-Blasco, J.M. Fernández, J.I. Alvarez, Construct. Build. Mater. 149, 257 (2017)

    Article  Google Scholar 

  12. G. Rossi, L. Pasquini, D. Catone, A. Piccioni, N. Patelli, A. Paladini, A. Molinari, S. Caramori, P. O’Keeffe, F. Boscherini, Appl. Catal. B: Environ. 237, 603 (2018)

    Article  Google Scholar 

  13. J. Shyue, M.R. De Guire, J. Am. Chem. Soc. 127, 12736 (2005)

    Article  Google Scholar 

  14. E. Roncari, C. Galassi, S. Ardizzone, C.L. Bianchi, Colloids Surf. A: Physicochem. Eng. Aspects 117, 267 (1996)

    Article  Google Scholar 

  15. S. Youn, S. Jeong, D.H. Kim, Catal. Today 232, 185 (2014)

    Article  Google Scholar 

  16. G. Busca, L. Marchetti, J. Chem. Soc. Faraday Trans. 81, 1003 (1985)

    Article  Google Scholar 

  17. G. Deo, I.E. Wachs, J. Catal. 146, 335 (1994)

    Article  Google Scholar 

  18. K. Nagase, Y. Shimizu, N. Miura, N. Yamazoe, Appl. Phys. Lett. 61, 243 (1992)

    Article  ADS  Google Scholar 

  19. T. Ivanova, A. Harizanova, Mater. Res. Bull. 40, 411 (2005)

    Article  Google Scholar 

  20. S. Songara, M.K. Patra, M. Manoth, L. Saini, V. Gupta, G.S. Gowd, S.R. Vadera, N. Kumar, J. Photochem. Photobiol. A: Chem. 209, 68 (2010)

    Article  Google Scholar 

  21. Z.M. Tian, S.L. Yuan, S.Y. Yin, S.Q. Zhang, H.Y. Xie, J.H. Miao, Y.Q. Wang, J.H. He, J.Q. Li, J. Magn. Magn. Mater. 320, L5 (2008)

    Article  ADS  Google Scholar 

  22. J.H. Chang, Y.L. Wang, C.D. Dong, S.Y. Shen, Catalysts 10, 482 (2020)

    Article  Google Scholar 

  23. T. Wu, W. Kong, Y. Zhang, Z. Xing, J. Zhao, T. Wang, X. Shi, Y. Luo, X. Sun, Small Methods 3, 1900356 (2019)

    Article  Google Scholar 

  24. D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Y. Ustinov, V.Y. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov, J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.02.068 (2020)

  25. H. Seo, D. Ichida, S. Hashimoto, N. Itagaki, K. Koga, M. Shiratani, S.-H. Nam, J.-H. Boo, J. Nanosci. Nanotechnol. 16, 4875 (2016)

    Article  Google Scholar 

  26. M. Crisan, M. Zaharescu, D. Crisan, R. Ion, M. Manolache, J. Sol-Gel Sci. Technol. 13, 775 (1998)

    Article  Google Scholar 

  27. A.I. Kokorin, V.I. Pergushov, A.I. Kulak, Catal. Lett. 150, 263 (2020)

    Article  Google Scholar 

  28. H.A. Kuska, M.T. Rogers, ESR of First Row Transition Metal Complex Ions (Wiley, New York, 1968)

    Google Scholar 

  29. A. Kh. Vorob’ev, N.A. Chumakova, in Nitroxides: Theory, Experiment and Applications, ed. by A.I. Kokorin (InTech Publ., Rijeka, 2012), pp. 57–112

  30. M.G. Cox, J. Inst. Maths. Appl. 15, 95 (1975)

    Article  Google Scholar 

  31. C. de Boor, J. Approx. Theory 6, 50 (1972)

    Article  Google Scholar 

  32. K. Lee, Principles of CAD/CAM/CAE Systems (Addison-Wesley, Reading, MA, 1999)

    Google Scholar 

  33. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Cholesky Decomposition, Numerical recipes 3rd edition: The art of scientific computing (Cambridge Univ. Cambridge, Cambridge, 2007)

    MATH  Google Scholar 

  34. B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, J. Waśniewski, A.C.M. Transact. Math. Softw. 31, 201 (2005)

    Article  Google Scholar 

  35. S.A. Al’tshuler, B.M. Kozyrev, Electron Paramagnetic resonance of the Compounds of Intermediate Groups (Nauka, Moscow, 1972). (in Russian)

    Google Scholar 

  36. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics (Harper & Row, New York, 1967)

    Google Scholar 

  37. Yu.B. Monakhova, S.A. Astakhov, A.I. Kraskov, S.P. Mushtakova, Chemomet. Intel. Labor. Systems 103, 108 (2010)

    Article  Google Scholar 

  38. H. Parastar, M. Jalali-Heravi, R. Tauler, Trends Anal. Chem. 31, 134 (2012)

    Article  Google Scholar 

  39. D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra (Mathematics Series. Freeman, San Francisco, 1963)

    MATH  Google Scholar 

  40. V.M. Verzhbitskiy, Fundamentals of Numerical Methods (Vysshaya shkola, Moscow, 2002)

    Google Scholar 

  41. K.K. Appukuttan, S. Bhat, J. Control Sci. Eng. doi: 10.1155/2010/789404 (2010)

  42. P. Courrieu, Neural Inform. Proc. Lett. Rev. 8, 25 (2005)

  43. J.C.A. Barata, M.S. Hussein, Brazil. J. Phys. 42, 146 (2012)

    Google Scholar 

  44. V. Luca, S. Thomson, R.F. Howe, J. Chem. Soc., Faraday Trans. 93, 2195 (1997)

Download references

Acknowledgements

This work was supported by the State assignment of RF № AAAA-A20-120021390044–2. We are thankful to Prof. A. Kh. Vorob’ev (Department of Chemistry, M. V. Lomonosov Moscow State University) provided us his computer Program package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly I. Kulak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulak, A.I., Travin, S.O. & Kokorin, A.I. Fine Analysis of the Structure and Dynamics of Vanadyl Complexes Adsorbed on TiO2 (Anatase) Surface: EPR Investigation. Appl Magn Reson 51, 1005–1017 (2020). https://doi.org/10.1007/s00723-020-01222-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01222-0

Navigation