Skip to main content
Log in

Molecular Orientation and Dynamics of a Derivative of 2,2,6,6-Tetramethyl-1-Piperidinyloxyl Radical with a Large Substituent Group Dispersed in 1D-Nanochannels of 2,4,6-Tris(4-Chlorophenoxy)-1,3,5-Triazine Crystal

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The molecular orientation and dynamics were examined for 4-acetamido-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-acetamido-TEMPO) radicals, which have a larger substituent group than many other TEMPO radicals, dispersed in the one-dimensional (1D) nanochannel of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) with 4-substituted-2,2,6,6-tetramethylpiperidine (R-TEMP; R=OH or H). When TEMPOH (R=OH) was used as a spacer for dispersion in the CLPOT nanochannels, the molecular orientation of 4-acetamido-TEMPO in the CLPOT nanochannels was similar to that of other previously reported 4-substituted-TEMPO (4-X-TEMPO; X=OH, =O or OCH3) radicals. However, the activation energy for the rotational diffusion of 4-acetamido-TEMPO in the CLPOT nanochannels, estimated to be 11 kJ mol−1, was larger than that of other 4-X-TEMPO molecules (6–8 kJ mol−1). These results indicate that the molecular dynamics of 4-X-TEMPO in the CLPOT nanochannels can be controlled by the selection of a larger substituent X at the 4-position in 4-X-TEMPO (in this study, X=NHCOCH3), and also suggest an important concept for the design of new organic magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Rinkevicius, B. Frecus, N.A. Murugan, O. Vahtras, J. Kongsted, H. Ågren, J. Chem. Theory Comput. 8, 257–263 (2012)

    Article  Google Scholar 

  2. G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion, Science 298, 1762–1765 (2002)

    Article  ADS  Google Scholar 

  3. Y. Zhang, W. Reisner, Nanotechnology 26, 455301 (2015)

    Article  ADS  Google Scholar 

  4. N. Yutronic, J. Merchán, P. Jara, V. Manríquez, O. Wittke, G. González, Supramol. Chem. 16, 411–414 (2004)

    Article  Google Scholar 

  5. J. Merchan, V. Lavayeni, P. Jara, V. Sanchez, N. Yutronic, J. Chil. Chem. Soc. 53, 1498–1502 (2008)

    Article  Google Scholar 

  6. T. Hertzsch, S. Kluge, E. Weber, F. Budde, J. Hulliger, Adv. Mater. 13, 1864–1867 (2001)

    Article  Google Scholar 

  7. T. Hertzsch, F. Budde, E. Weber, J. Hulliger, Angew. Chem. Int. Ed. 41, 2281–2284 (2002)

    Article  Google Scholar 

  8. S. Ferrati, E. Nicolov, S. Bansal, S. Hosali, M. Landis, A. Grattoni, Curr. Drug Targets 16, 1645–1649 (2015)

    Article  Google Scholar 

  9. F. Wang, E. Blanco, J. Gao, H. Ai, D.A. Boothman, J. Pharm. Sci. 95, 2309–2319 (2006)

    Article  Google Scholar 

  10. F. Wang, G.M. Saidel, J. Gao, J. Control. Release 119, 112 (2007)

    Google Scholar 

  11. J.X. Huang, C.D. Luo, W.B. Li, Y. Li, Y.S. Zhang, J.H. Zhou, Q. Jiang, J. Mater. Chem. B 3, 4530–4538 (2015)

    Article  Google Scholar 

  12. C.-S. Lu, X.-M. Ren, C.-J. Hu, J.-Z. Zhu, Q.-J. Meng, Chem. Pharm. Bull. 49, 818–821 (2001)

    Article  Google Scholar 

  13. G. Couderc, J. Hulliger, Chem. Soc. Rev. 39, 1545–1554 (2010)

    Article  Google Scholar 

  14. H. Kobayashi, in Theoretical Chemistry for Advanced Nanomaterials-Functional Analysis by Computation and Experiment, Ch. 12, ed. by T. Onishi (Springer, Singapore, 2020)

  15. M. Meilikhov, K. Yusenko, A. Torrisi, B. Jee, C. Mellot-Draznieks, A. Pöppl, R.A. Fischer, Angew. Chem. Int. Ed. 49, 6212–6233 (2009)

    Article  Google Scholar 

  16. R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.-C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Science 298, 2358–2361 (2002)

    Article  ADS  Google Scholar 

  17. H. Kobayashi, H. Takamisawa, Y. Furuhashi, H. Nakagawa, K. Nakatsugawa, K. Takeuchi, Y. Morinaga, Bull. Chem. Soc. Jpn 91, 375–382 (2018)

    Article  Google Scholar 

  18. H. Kobayashi, T. Ueda, K. Miyakubo, J. Toyoda, T. Eguchi, A. Tani, J. Mater. Chem. 15, 872–879 (2005)

    Article  Google Scholar 

  19. H. Kobayashi, T. Ueda, K. Miyakubo, T. Eguchi, A. Tani, Bull. Chem. Soc. Jpn 80, 711–720 (2007)

    Article  Google Scholar 

  20. K.R. Jetti, P.K. Thallapally, F. Xue, T.C.W. Mak, A. Nangia, Tetrahedron 56, 6707–6719 (2000)

    Article  Google Scholar 

  21. H. Kobayashi, T. Asaji, A. Tani, Magn. Reson. Chem. 50, 221–228 (2012)

    Article  Google Scholar 

  22. H. Kobayashi, Y. Furuhashi, H. Nakagawa, T. Asaji, Magn. Reson. Chem. 54, 641–649 (2016)

    Article  Google Scholar 

  23. H.R. Allcock, L.A. Siegel, J. Am. Chem. Soc. 86, 5140–5144 (1964)

    Article  Google Scholar 

  24. H. Kobayashi, K. Takeuchi, T. Asaji, J. Phys. Chem. A 117, 2093–2101 (2013)

    Article  Google Scholar 

  25. A. Barbon, A. Zoleo, M. Brustolon, A. Comotti, P. Sozzani, Inorg. Chim. Acta 361, 4122–4128 (2008)

    Article  Google Scholar 

  26. H.I. Süss, T. Wuest, A. Sieber, R. Althaus, F. Budde, H.-P. Lüthi, G.D. McManus, J. Rawson, J. Hulliger, CrystEngComm 4, 432–439 (2002)

    Article  Google Scholar 

  27. H. Kobayashi, T. Asaji, A. Tani, Materials 3, 3625–3641 (2010)

    Article  ADS  Google Scholar 

  28. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  29. http://www.easyspin.org/. Accessed 6 Feb 2020

  30. J.H. Freed, in Spin Labeling, Theory and Applications, ed. by L.J. Berliner (Academic Press Inc., New York, US, 1976), pp. 53–132

  31. S.D. Bruce, J. Higinbotham, I. Marshall, P.H. Beswick, J. Magn. Reson. 142, 57–63 (2000)

    Article  ADS  Google Scholar 

  32. Y. Odanaka, T. Kanemitsu, K. Iwasaki, Y. Mochizuki, M. Miyazaki, K. Nagata, M. Kato, T. Itoh, Tetrahedron 75, 209–219 (2019)

    Article  Google Scholar 

  33. M. Ikeya, New Applications of Electron Spin Resonance, Dating, Dosimetry and Microscopy (World Scientific Publishing Co Pte. Ltd., Singapore, 1993)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor T. Asaji of Nihon University for assistance with the ESR analyses and Prof. S. Stoll of the University of the Washington for assistance with the EasySpin calculations.

Funding

This work was supported in part by Common Research Funding from Showa University, 2017–2019 (17FY02).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Hirokazu Kobayashi.

Ethics declarations

Conflict of interest

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, H., Odanaka, Y. Molecular Orientation and Dynamics of a Derivative of 2,2,6,6-Tetramethyl-1-Piperidinyloxyl Radical with a Large Substituent Group Dispersed in 1D-Nanochannels of 2,4,6-Tris(4-Chlorophenoxy)-1,3,5-Triazine Crystal. Appl Magn Reson 51, 711–724 (2020). https://doi.org/10.1007/s00723-020-01218-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01218-w

Navigation