Skip to main content
Log in

The Two Alternative Oxidation State Assignments of Manganese Ions: What S2 CW-EPR Multiline (ML) Signal Simulations Reveal?

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Characterizing the photosystem II (PSII) sample, continuous wave electron paramagnetic resonance (CW-EPR) simulations of the S2 ML signal at X-band frequencies was our focus. This can help increase our understanding of how the manganese (Mn) atoms in the catalytic site of the PSII magnetically interact using ML signals. It can also be used to further the understanding of possible water-splitting mechanisms in the oxygen-evolving complex (OEC). The question that remains is how much does each manganese (Mn) ion contribute to the ML signal through its hyperfine interactions in the OEC? Currently, there are two proposals for the average oxidation states of the Mn ions, denoted the ‘high’ oxidation paradigm (HOP) and the ‘low’ oxidation paradigm (LOP). Majority of PSII researchers favour the HOP. Various experiments have been conducted to investigate the two alternative oxidation states, including EPR (Jin et al. in Phys Chem Chem Phys 16(17):7799–7812, https://doi.org/10.1039/c3cp55189j, 2014; Baituti in Hyperfine Interact 238(1), https://doi.org/10.1007/s10751-017-1440-8, 2017; Ioannidis et al. in Biochemistry, https://doi.org/10.1021/bi060520s, 2006). The S2 ML EPR signal simulation using the 55Mn hyperfine coupling constants, with one very large, one medium, and two small hyperfine values, fits the experimental data. The Mn1 has a large hyperfine coupling, which agrees well with earlier data by Jin et al. [19]. Three large fractional anisotropy observed on three Mn centers (Mn1,3,4), suggests the presence of three MnIII ions, and Mn2 center is likely to be MnIV ion, hence favouring the LOP (MnIII MnIV MnIII MnIII).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Lohmiller, V. Krewald, M.P. Navarro, M. Retegan, L. Rapatskiy, M.M. Nowaczyk, A. Boussac, F. Neese, W. Lubitz, D.A. Pantazis, N. Cox, Phys. Chem. Chem. Phys. 16(24), 11877 (2014). https://doi.org/10.1039/c3cp55017f

    Article  Google Scholar 

  2. J.H. Su, N. Cox, W. Ames, D.A. Pantazis, L. Rapatskiy, T. Lohmiller, L.V. Kulik, P. Dorlet, A.W. Rutherford, F. Neese, A. Boussac, W. Lubitz, J. Messinger. Biochim. Biophys. Acta Bioenergy (2011). https://doi.org/10.1016/j.bbabio.2011.03.002

    Article  Google Scholar 

  3. R.J. Debus, B.A. Barry, I. Sithole, G.T. Babcock, L. Mcintosh, Biochemistry (1988). https://doi.org/10.1021/bi00426a001

    Article  Google Scholar 

  4. B.A. Diner, R.D. Britt, in Advances in Photosynthesis and Respiration, vol. 22, ed. by T.J. Wydrzynski, K. Satoh (Springer, Dordrecht, 2005), p. 207

    Google Scholar 

  5. J.G. Metz, P.J. Nixon, M. Rögner, G.W. Brudvig, B.A, Diner, Biochemistry (1989). https://doi.org/10.1021/bi00443a028

    Article  Google Scholar 

  6. B. Kok, B. Forbush, M. Mcgloin, Photochem. Photobiol. (1970). https://doi.org/10.1111/j.1751-1097.1970.tb06017.x

    Article  Google Scholar 

  7. M. Haumann, C. Müller, P. Liebisch, L. Iuzzolino, J. Dittmer, M. Grabolle, T. Neisius, W. Meyer-Klaucke, H. Dau, Biochemistry 44(6), 1894–1908 (2005)

    Article  Google Scholar 

  8. B. Forbush, B. Kok, M.P. Mcgloin, Photochem. Photobiol. (1971). https://doi.org/10.1111/j.1751-1097.1971.tb06175.x

    Article  Google Scholar 

  9. S. Styring, A.W. Rutherford, BBA Bioenergy (1988). https://doi.org/10.1016/0005-2728(88)90046-1

    Article  Google Scholar 

  10. J.P. McEvoy, G.W. Brudvig, Chem. Rev. 106(11), 4455–4483 (2006). https://doi.org/10.1021/cr0204294

    Article  Google Scholar 

  11. W. Hillier, G.T. Babcock, Biochemistry 40(6), 1503–1509 (2001). https://doi.org/10.1021/bi002436x

    Article  Google Scholar 

  12. K.N. Ferreira, Science (80-)303(5665), 1831–1838 (2004). https://doi.org/10.1126/science.1093087

    Article  ADS  Google Scholar 

  13. B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 438(7070), 1040–1044 (2005). https://doi.org/10.1038/nature04224

    Article  ADS  Google Scholar 

  14. A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Nat. Struct. Mol. Biol. 16(3), 334–342 (2009). https://doi.org/10.1038/nsmb.1559

    Article  Google Scholar 

  15. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 473(7345), 55–60 (2011). https://doi.org/10.1038/nature09913

    Article  ADS  Google Scholar 

  16. M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.R. Shen, Nature (2015). https://doi.org/10.1038/nature13991

    Article  Google Scholar 

  17. A. Zouni, H.T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, P. Orth, Nature 2001(409), 739–743 (1988). https://doi.org/10.1038/35055589

    Article  Google Scholar 

  18. N. Kamiya, J.-R. Shen, Proc. Natl. Acad. Sci. USA 100(1), 98–103 (2003). https://doi.org/10.1073/pnas.0135651100

    Article  ADS  Google Scholar 

  19. L. Jin, P. Smith, C.J. Noble, R. Stranger, G.R. Hanson, R.J. Pace, Phys. Chem. Chem. Phys. 16(17), 7799–7812 (2014). https://doi.org/10.1039/c3cp55189j

    Article  Google Scholar 

  20. W. Lubitz, M. Chrysina, N. Cox, Photosynth. Res. (2019). https://doi.org/10.1007/s11120-019-00648-3

    Article  Google Scholar 

  21. J. Kern, R. Alonso-Mori, J. Hellmich, R. Tran, J. Hattne, H. Laksmono, C. Glockner, N. Echols, R.G. Sierra, J. Sellberg, B. Lassalle-Kaiser, R.J. Gildea, P. Glatzel, R.W. Grosse-Kunstleve, M.J. Latimer, T.A. McQueen, D. DiFiore, A.R. Fry, M. Messerschmidt, A. Miahnahri, D.W. Schafer, M.M. Seibert, D. Sokaras, T.-C. Weng, P.H. Zwart, W.E. White, P.D. Adams, M.J. Bogan, S. Boutet, G.J. Williams, J. Messinger, N.K. Sauter, A. Zouni, U. Bergmann, J. Yano, V.K. Yachandra, Proc. Natl. Acad. Sci. (2012). https://doi.org/10.1073/pnas.1204598109

    Article  Google Scholar 

  22. J. Kern, R. Alonso-Mori, R. Tran, J. Hattne, R.J. Gildea, N. Echols, C. Gloc̈kner, J. Hellmich, H. Laksmono, R.G. Sierra, B. Lassalle-Kaiser, S. Koroidov, A. Lampe, G. Han, S. Gul, D. DiFiore, D. Milathianaki, A.R. Fry, A. Miahnahri, D.W. Schafer, M. Messerschmidt, M.M. Seibert, J.E. Koglin, D. Sokaras, T.C. Weng, J. Sellberg, M.J. Latimer, R.W. Grosse-Kunstleve, P.H. Zwart, W.E. White, P. Glatzel, P.D. Adams, M.J. Bogan, G.J. Williams, S. Boutet, J. Messinger, A. Zouni, N.K. Sauter, V.K. Yachandra, U. Bergmann, J. Yano, Science (80-) (2013). https://doi.org/10.1126/science.1234273

    Article  Google Scholar 

  23. J. Kern, R. Tran, R. Alonso-Mori, S. Koroidov, N. Echols, J. Hattne, M. Ibrahim, S. Gul, H. Laksmono, R.G. Sierra, R.J. Gildea, G. Han, J. Hellmich, B. Lassalle-Kaiser, R. Chatterjee, A.S. Brewster, C.A. Stan, C. Glöckner, A. Lampe, D. Difiore, D. Milathianaki, A.R. Fry, M.M. Seibert, J.E. Koglin, E. Gallo, J. Uhlig, D. Sokaras, T.C. Weng, P.H. Zwart, D.E. Skinner, M.J. Bogan, M. Messerschmidt, P. Glatzel, G.J. Williams, S. Boutet, P.D. Adams, A. Zouni, J. Messinger, N.K. Sauter, U. Bergmann, J. Yano, V.K. Yachandra, Nat. Commun. (2014). https://doi.org/10.1038/ncomms5371

    Article  Google Scholar 

  24. J. Kern, R. Chatterjee, I.D. Young, F.D. Fuller, L. Lassalle, M. Ibrahim, S. Gul, T. Fransson, A.S. Brewster, R. Alonso-Mori, R. Hussein, M. Zhang, L. Douthit, C. de Lichtenberg, M.H. Cheah, D. Shevela, J. Wersig, I. Seuffert, D. Sokaras, E. Pastor, C. Weninger, T. Kroll, R.G. Sierra, P. Aller, A. Butryn, A.M. Orville, M. Liang, A. Batyuk, J.E. Koglin, S. Carbajo, S. Boutet, N.W. Moriarty, J.M. Holton, H. Dobbek, P.D. Adams, U. Bergmann, N.K. Sauter, A. Zouni, J. Messinger, J. Yano, V.K. Yachandra, Nature (2018). https://doi.org/10.1038/s41586-018-0681-2

    Article  Google Scholar 

  25. C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N.A. Zatsepin, K.N. Rendek, M.S. Hunter, R.L. Shoeman, T.A. White, D. Wang, D. James, J.H. Yang, D.E. Cobb, B. Reeder, R.G. Sierra, H. Liu, A. Barty, A.L. Aquila, D. Deponte, R.A. Kirian, S. Bari, J.J. Bergkamp, K.R. Beyerlein, M.J. Bogan, C. Caleman, T.C. Chao, C.E. Conrad, K.M. Davis, H. Fleckenstein, L. Galli, S.P. Hau-Riege, S. Kassemeyer, H. Laksmono, M. Liang, L. Lomb, S. Marchesini, A.V. Martin, M. Messerschmidt, D. Milathianaki, K. Nass, A. Ros, S. Roy-Chowdhury, K. Schmidt, M. Seibert, J. Steinbrener, F. Stellato, L. Yan, C. Yoon, T.A. Moore, A.L. Moore, Y. Pushkar, G.J. Williams, S. Boutet, R.B. Doak, U. Weierstall, M. Frank, H.N. Chapman, J.C.H. Spence, P. Fromme, Nature (2014). https://doi.org/10.1038/nature13453

    Article  Google Scholar 

  26. V.K. Yachandra, K. Sauer, M.P. Klein, Chem. Rev. (1996). https://doi.org/10.1021/cr950052k

    Article  Google Scholar 

  27. R.J. Pace, L. Jin, R. Stranger, Dalton Trans. (2012). https://doi.org/10.1039/c2dt30938f

    Article  Google Scholar 

  28. N. Cox, D.A. Pantazis, F. Neese, W. Lubitz, Acc. Chem. Res. 46(7), 1588–1596 (2013). https://doi.org/10.1021/ar3003249

    Article  Google Scholar 

  29. T. Lohmiller, W. Ames, W. Lubitz, N. Cox, S.K. Misra, Appl. Magn. Reson. (2013). https://doi.org/10.1007/s00723-012-0437-3

    Article  Google Scholar 

  30. K.A. Åhrling, R.J. Pace, M.C.W. Evans, in Advances in photosynthesis and respiration, vol. 22, ed. by T.J. Wydrzynski, K. Satoh (Springer, Dordrecht, 2005), pp. 285–305

    Google Scholar 

  31. J.L. Casey, K. Sauer, BBA Bioenergy (1984). https://doi.org/10.1016/0005-2728(84)90075-6

    Article  Google Scholar 

  32. J.C. de Paula, J.B. Innes, G.W. Brudvig, Biochemistry (1985). https://doi.org/10.1021/bi00348a042

    Article  Google Scholar 

  33. R.J. Pace, K.A. Åhrling, Biochim. Biophys. Acta Bioenergy 1655(1–3), 172–178 (2004). https://doi.org/10.1016/j.bbabio.2003.09.016

    Article  Google Scholar 

  34. G.C. Dismukes, Y. Siderer, Proc. Natl. Acad. Sci. USA 78(1), 274–278 (1981). https://doi.org/10.1073/pnas.78.1.274

    Article  ADS  Google Scholar 

  35. Ö. Hansson, L.E. Andréasson, BBA Bioenergy 679(2), 261–268 (1982). https://doi.org/10.1016/0005-2728(82)90296-1

    Article  Google Scholar 

  36. G.W. Brudvig, J.L. Casey, K. Sauer, Biochim. Biophys. Acta Bioenergy 723(3), 366–371 (1983). https://doi.org/10.1016/0005-2728(83)90042-7

    Article  Google Scholar 

  37. K.A. Ahrling, R.J. Pace, Biophys. J. 68(5), 2081–2090 (1995). https://doi.org/10.1016/S0006-3495(95),80387-5

    Article  ADS  Google Scholar 

  38. P.J. Smith, K.A. Åhrling, R.J. Pace, J. Chem. Soc. Faraday Trans. (1993). https://doi.org/10.1039/FT9938902863

    Article  Google Scholar 

  39. A. Haddy, G.S. Waldo, R.H. Sands, J.E. Penner-Hahn, Inorg. Chem. (1994). https://doi.org/10.1021/ic00090a033

    Article  Google Scholar 

  40. L.V. Kulik, B. Epel, W. Lubitz, J. Messinger, J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja071487f

    Article  Google Scholar 

  41. B. Baituti, Hyperfine Interact. (2017). https://doi.org/10.1007/s10751-017-1440-8

    Article  Google Scholar 

  42. N. Cox, L. Rapatskiy, J.-H. Su, D.A. Pantazis, M. Sugiura, L. Kulik, P. Dorlet, A.W. Rutherford, F. Neese, A. Boussac, W. Lubitz, J. Messinger, J. Am. Chem. Soc. (2011). https://doi.org/10.1021/ja110145v

    Article  Google Scholar 

  43. J.M. Peloquin, K.A. Campbell, D.W. Randall, M.A. Evanchik, V.L. Pecoraro, W.H. Armstrong, R.D. Britt, J. Am. Chem. Soc. (2000). https://doi.org/10.1021/ja002104f

    Article  Google Scholar 

  44. C. Teutloff, S. Pudollek, S. Keßen, M. Broser, A. Zouni, R. Bittl, Phys. Chem. Chem. Phys. (2009). https://doi.org/10.1039/b908093g

    Article  Google Scholar 

  45. H. Chen, D.A. Case, G.C. Dismukes, J. Phys. Chem. B. (2018). https://doi.org/10.1021/acs.jpcb.8b08147

    Article  Google Scholar 

  46. R. Terrett, S. Petrie, R. Stranger, R.J. Pace, J. Inorg. Biochem. (2016). https://doi.org/10.1016/j.jinorgbio.2016.04.009

    Article  Google Scholar 

  47. M. Zheng, G.C. Dismukes, Inorg. Chem. (1996). https://doi.org/10.1021/ic9512340

    Article  Google Scholar 

  48. G.C. Dismukes, K. Ferris, P. Watnick, Photobiochem. Photobiophys. 3, 243–256 (1982)

    Google Scholar 

  49. M.F. Charlot, A. Boussac, G. Blondin, Biochim. Biophys. Acta Bioenergy (2005). https://doi.org/10.1016/j.bbabio.2005.01.006

    Article  Google Scholar 

  50. N. Ioannidis, G. Zahariou, V. Petrouleas, Biochemistry (2006). https://doi.org/10.1021/bi060520s

    Article  Google Scholar 

  51. J. Messinger, Phys. Chem. Chem. Phys. (2004). https://doi.org/10.1039/b406437b

    Article  Google Scholar 

  52. W. Hillier, T. Wydrzynski, Biochim. Biophys. Acta Bioenergy (2001). https://doi.org/10.1016/S0005-2728(00)00225-5

    Article  Google Scholar 

  53. V. Krewald, M. Retegan, N. Cox, J. Messinger, W. Lubitz, S. DeBeer, F. Neese, D.A. Pantazis, Chem. Sci. 6(3), 1676–1695 (2015). https://doi.org/10.1039/C4SC03720K

    Article  Google Scholar 

  54. S. Petrie, R. Stranger, R.J. Pace, Chem. A Eur. J. 21(18), 6780–6792 (2015). https://doi.org/10.1002/chem.201406419

    Article  Google Scholar 

  55. T.M. Bricker, H.B. Pakrasi, L.A. Sherman, Arch. Biochem. Biophys. 237(1), 170–176 (1985). https://doi.org/10.1016/0003-9861(85)90266-8

    Article  Google Scholar 

  56. S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42–55 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  57. A. Bencini, D. Gatteschi, in Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer, Berlin, Heidelberg, 1990) pp. 48–85. https://doi.org/10.1007/978-3-642-74599-7

  58. B. Baituti, J. Theor. Comput. Chem. (2018). https://doi.org/10.1142/S0219633618500074

    Article  Google Scholar 

  59. Y. Kurashige, G.K.-L. Chan, T. Yanai, Nat. Chem. 5(8), 660–666 (2013). https://doi.org/10.1038/nchem.1677

    Article  Google Scholar 

  60. M. Asada, H. Nagashima, F.H.M. Koua, J.R. Shen, A. Kawamori, H. Mino, Biochim. Biophys. Acta Bioenergy (2013). https://doi.org/10.1016/j.bbabio.2012.12.011

    Article  Google Scholar 

  61. G.R. Hanson, C.J. Noble, S. Benson, in EPR of free radicals in solids I. Progress in Theoretical Chemistry and Physics, vol 24, ed. by A. Lund, M. Shiotani (Springer, Dordrecht, 2013)

  62. T.G. Carrell, A.M. Tyryshkin, G.C. Dismukes, J. Biol. Inorg. Chem. (2002). https://doi.org/10.1007/s00775-001-0305-3

    Article  Google Scholar 

  63. J. Bonvoisin, G. Blondin, J.J. Girerd, J.L. Zimmermann, Biophys. J. (1992). https://doi.org/10.1016/S0006-3495(92)81917-3

    Article  Google Scholar 

  64. P. Gatt, R. Stranger, R.J. Pace, J. Photochem. Photobiol. B Biol. (2011). https://doi.org/10.1016/j.jphotobiol.2011.02.008

    Article  Google Scholar 

  65. D.W. Randall, B.E. Sturgeon, J.A. Ball, G.A. Lorigan, R.D. Britt, M.K. Chan, M.P. Klein, W.H. Armstrong, J. Am. Chem. Soc. (1995). https://doi.org/10.1021/ja00152a021

    Article  Google Scholar 

  66. S. Pudollek, F. Lendzian, R. Bittl, Biochem. Soc. Trans (2008). https://doi.org/10.1042/BST0361001

    Article  Google Scholar 

  67. K.A. Åhrling, P.J. Smith, R.J. Pace, J. Am. Chem. Soc. (1998). https://doi.org/10.1021/ja981471c

    Article  Google Scholar 

  68. S. Petrie, R. Stranger, R.J. Pace, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c7cp04797e

    Article  Google Scholar 

  69. S. Petrie, R. Stranger, R.J. Pace, ChemPhysChem (2017). https://doi.org/10.1002/cphc.201700640

    Article  Google Scholar 

  70. I.D. Young, M. Ibrahim, R. Chatterjee, S. Gul, F.D. Fuller, S. Koroidov, A.S. Brewster, R. Tran, R. Alonso-Mori, T. Kroll, T. Michels-Clark, H. Laksmono, R.G. Sierra, C.A. Stan, R. Hussein, M. Zhang, L. Douthit, M. Kubin, C. De Lichtenberg, L. Vo Pham, H. Nilsson, M.H. Cheah, D. Shevela, C. Saracini, M.A. Bean, I. Seuffert, D. Sokaras, T.C. Weng, E. Pastor, C. Weninger, T. Fransson, L. Lassalle, P. Bräuer, P. Aller, P.T. Docker, B. Andi, A.M. Orville, J.M. Glownia, S. Nelson, M. Sikorski, D. Zhu, M.S. Hunter, T.J. Lane, A. Aquila, J.E. Koglin, J. Robinson, M. Liang, S. Boutet, A.Y. Lyubimov, M. Uervirojnangkoorn, N.W. Moriarty, D. Liebschner, P.V. Afonine, D.G. Waterman, G. Evans, P. Wernet, H. Dobbek, W.I. Weis, A.T. Brunger, P.H. Zwart, P.D. Adams, A. Zouni, J. Messinger, U. Bergmann, N.K. Sauter, J. Kern, V.K. Yachandra, J. Yano, Nature (2016). https://doi.org/10.1038/nature20161

    Article  Google Scholar 

  71. M. Suga, F. Akita, M. Sugahara, M. Kubo, Y. Nakajima, T. Nakane, K. Yamashita, Y. Umena, M. Nakabayashi, T. Yamane, T. Nakano, M. Suzuki, T. Masuda, S. Inoue, T. Kimura, T. Nomura, S. Yonekura, L.J. Yu, T. Sakamoto, T. Motomura, J.H. Chen, Y. Kato, T. Noguchi, K. Tono, Y. Joti, T. Kameshima, T. Hatsui, E. Nango, R. Tanaka, H. Naitow, Y. Matsuura, A. Yamashita, M. Yamamoto, O. Nureki, M. Yabashi, T. Ishikawa, S. Iwata, J.R. Shen, Nature (2017). https://doi.org/10.1038/nature21400

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Botswana International University of Science and Technology (BIUST), initiation Grant Number R00029. We also thank Dr. Paul Smith for help with sample preparation as well as EPR spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Baituti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baituti, B., Akofang, L. The Two Alternative Oxidation State Assignments of Manganese Ions: What S2 CW-EPR Multiline (ML) Signal Simulations Reveal?. Appl Magn Reson 51, 389–407 (2020). https://doi.org/10.1007/s00723-020-01190-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01190-5

Navigation