Skip to main content
Log in

In Situ FMR Study of the Selective H2S-Oxidation Stability of ε-Fe2O3/SiO2 Catalysts

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The stability of a catalyst for partial H2S oxidation has been studied by the ferromagnetic resonance (FMR) technique combined with transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetostatic investigations. The ε-Fe2O3 iron oxide nanoparticles supported on silica have been examined for their stability under the selective H2S oxidation conditions. The combination of the physicochemical methods has been used to study the state of reacted catalysts. The ε-Fe2O3 phase has been found to remain stable under the selective H2S oxidation conditions at temperatures up to 300 °C. The active phase state during the catalytic reaction has been explored using in situ FMR experiments. It has been established that the ε-Fe2O3 nanoparticles retain their structure and magnetic properties in the presence of H2S at high temperatures. During the in situ FMR experiments, the ε-Fe2O3 sulfidation process has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Dong, M. Xie, J. Xu, M. Li, L. Peng, X. Guo, W. Ding, Chem. Commun. 47, 4019 (2011)

    Article  Google Scholar 

  2. S.-H. Kang, J.W. Bae, J.-Y. Cheon, Y.-J. Lee, K.-S. Ha, K.-W. Jun, D.-H. Lee, B.-W. Kim, Appl. Catal. B Environ. 103, 169 (2011)

    Article  Google Scholar 

  3. K. Matsuoka, T. Shimbori, K. Kuramoto, H. Hatano, Y. Suzuki, Energy Fuels 20, 2727 (2006)

    Article  Google Scholar 

  4. A. Schüle, O. Shekhah, W. Ranke, R. Schlögl, G. Kolios, J. Catal. 231, 172 (2005)

    Article  Google Scholar 

  5. F. Gong, T. Ye, L. Yuan, T. Kan, Y. Torimoto, M. Yamamoto, Q. Li, Green Chem. 11, 2001 (2009)

    Article  Google Scholar 

  6. R.J.A.M. Terorde, P.J. Van Den Brink, L.M. Visser, A.J. Van Dillen, J.W. Geus, Geus, Catal. Today Elsevier Sci. Publ. B.V 17, 217 (1993)

    Google Scholar 

  7. D. Won Park, S. Woo Chun, J. Yeol Jang, H. Sun Kim, H. Chul Woo, J. Shik Chung, Catal. Today 44, 73 (1998)

    Article  Google Scholar 

  8. Y.-M. Su, C.-Y. Huang, Y.-P. Chyou, K. Svoboda, J. Taiwan Inst. Chem. Eng. 74, 89 (2017)

    Article  Google Scholar 

  9. N. Keller, R. Vieira, J.M. Nhut, C. Pham-Huu, M.J. Ledoux, J. Braz. Chem. Soc. 16, 514 (2005)

    Article  Google Scholar 

  10. M.A. Shuvaeva, I.V. Delii, O.N. Martyanov, O.A. Bayukov, E.I. Osetrov, A.A. Saraev, V.V. Kaichev, N.S. Sakaeva, G.A. Bukhtiyarova, Kinet. Catal. 52, 896 (2011)

    Article  Google Scholar 

  11. M. Wu, Z. Su, H. Fan, J. Mi, Energy Fuels 31, 4263 (2017)

    Article  Google Scholar 

  12. G.A. Bukhtiyarova, I.V. Delii, N.S. Sakaeva, V.V. Kaichev, L.M. Plyasova, V.I. Bukhtiyarov, React. Kinet. Catal. Lett. 92, 89 (2007)

    Article  Google Scholar 

  13. P.J. Van Den Brink, A. Scholten, A.J. Van Dillen, J.W. Geus, E. Boellaard, A.M. Van Der Kraan. Catalyst Deactivation 1991, 1st Edition, pp 825

  14. N.S. Sakaeva, V.A. Varnek, G.A. Bukhtiyarova, V.F. Anufrienko, E.A. Sobolev, B.P. Zolotovskii, React. Kinet. Catal. Lett. 70, 169 (2000)

    Article  Google Scholar 

  15. G.A. Bukhtiyarova, V.I. Bukhtiyarov, N.S. Sakaeva, V.V. Kaichev, B.P. Zolotovskii, J. Mol. Catal. A: Chem. 158, 251 (2000)

    Article  Google Scholar 

  16. G.A. Bukhtiyarova, M.A. Shuvaeva, O.A. Bayukov, S.S. Yakushkin, O.N. Martyanov, J. Nanoparticle Res. 13, 5527 (2011)

    Article  ADS  Google Scholar 

  17. E. Tronc, C. Chanéac, J.P. Jolivet, J. Solid State Chem. 139, 93 (1998)

    Article  ADS  Google Scholar 

  18. M. Gich, A. Roig, E. Taboada, E. Molins, C. Bonafos, E. Snoeck, Faraday Disc. 136, 345 (2007)

    Article  ADS  Google Scholar 

  19. M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martín y Marero, J. Nogués, J. Appl. Phys. 98, 044307 (2005)

    Article  ADS  Google Scholar 

  20. J. Jin, S. Ohkoshi, K. Hashimoto, Adv. Mater. 16, 48 (2004)

    Article  Google Scholar 

  21. D.A. Balaev, S.S. Yakushkin, A.A. Dubrovskii, G.A. Bukhtiyarova, K.A. Shaikhutdinov, O.N. Martyanov, Tech. Phys. Lett. 42, 347 (2016)

    Article  ADS  Google Scholar 

  22. D.A. Balaev, I.S. Poperechny, A.A. Krasikov, K.A. Shaikhutdinov, A.A. Dubrovskiy, S.I. Popkov, A.D. Balaev, S.S. Yakushkin, G.A. Bukhtiyarova, O.N. Martyanov, Y.L. Raikher, J. Appl. Phys. 117, 063908 (2015)

    Article  ADS  Google Scholar 

  23. S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, O. N. Martyanov, J. Appl. Phys. 111 (2012)

  24. A.A. Dubrovskiy, D.A. Balaev, K.A. Shaykhutdinov, O.A. Bayukov, O.N. Pletnev, S.S. Yakushkin, G.A. Bukhtiyarova, O.N. Martyanov, J. Appl. Phys. 118, 213901 (2015)

    Article  ADS  Google Scholar 

  25. S.S. Yakushkin, G.A. Bukhtiyarova, O.N. Martyanov, J. Struct. Chem. 54, 876 (2013)

    Article  Google Scholar 

  26. A.A. Gabrienko, A.V. Ewing, A.M. Chibiryaev, A.M. Agafontsev, K.A. Dubkov, S.G. Kazarian, Phys. Chem. Chem. Phys. 18, 6465 (2016)

    Article  Google Scholar 

  27. R. Schlögl, S.B. Abd Hamid, Angew. Chemie Int. Ed. 43, 1628 (2004)

    Article  Google Scholar 

  28. M.P. Felicissimo, O.N. Martyanov, T. Risse, H.J. Freund, Surf. Sci. 601, 2105 (2007)

    Article  ADS  Google Scholar 

  29. O.N. Martyanov, T. Risse, H.J. Freund, J. Chem. Phys. 129, 114703 (2008)

    Article  ADS  Google Scholar 

  30. A. Brückner, Chem. Soc. Rev. 39, 4673 (2010)

    Article  Google Scholar 

  31. N.S. Nesterov, I.I. Simentsova, V.F. Yudanov, O.N. Martyanov, J. Struct. Chem. 57, 90 (2016)

    Article  Google Scholar 

  32. J.L. García-Muñoz, A. Romaguera, F. Fauth, J. Nogués, M. Gich, Chem. Mater. 29, 9705 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, project no. 17-12-01111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Yakushkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushkin, S.S., Bukhtiyarova, G.A., Dubrovskiy, A.A. et al. In Situ FMR Study of the Selective H2S-Oxidation Stability of ε-Fe2O3/SiO2 Catalysts. Appl Magn Reson 50, 725–733 (2019). https://doi.org/10.1007/s00723-019-1109-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-1109-3

Navigation