Skip to main content
Log in

Properties and Edition of NMR Spontaneous Maser Emission Spectra

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Spontaneous maser emission provides the practical possibility for a spectral edition in methyl chloroacetate. Methyl and methylene resonances opposite to conventional nuclear magnetic resonance spectra are clearly separated within the time domain of free induction decay. Associated characteristic time delay, which represents the appropriate time from completion of the radiofrequency pulse to the signal maximum, can be properly broken on a random and a nonrandom part. Overall, the time delay is distinctively shorter about 0.296 s for methyl and longer about 0.489 s for methylene peaks, enabling spectra edition. Although maser emission reaches maximum for pulse rotation angle at 180°, it can be observed in a significantly broader range. The maser emission reveals random intensity, and its scattering range depends on the pulse rotation angle and is most limited when rotation angle is within direct vicinity of 180°. The spontaneous maser emission is triggered by thermal Nyquist noise through radiation damping. If the pulse rotation angle is sufficiently small, the amplified spin noise is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.E. Ball, G.J. Bowden, T.H. Heseltine, M.J. Prandolini, W. Bermel, Chem. Phys. Lett. 261, 421 (1996)

    Article  ADS  Google Scholar 

  2. J.H. Chen, X.A. Mao, C.H. Ye, J. Magn. Reson. A 123(1), 126 (1996)

    Article  ADS  Google Scholar 

  3. A. Vlassenbroek, J. Jeener, P. Broekaert, J. Chem. Phys. 103(14), 5886 (1995)

    Article  ADS  Google Scholar 

  4. X.M. Mao, J.X. Guo, C.H. Ye, Chem. Phys. Lett. 227, 65 (1994)

    Article  ADS  Google Scholar 

  5. V.V. Krishnan, N. Murali, Prog. NMR Spectrosc. 68, 41 (2013)

    Article  Google Scholar 

  6. X.M. Mao, J.H. Chen, Chem. Phys. 202, 357 (1996)

    Article  Google Scholar 

  7. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

  8. M.P. Augustine, S.D. Bush, E.L. Hahn, Chem. Phys. Lett. 322, 111 (2000)

    Article  ADS  Google Scholar 

  9. D.J.Y. Marion, P. Berthault, H. Desvaux, Eur. Phys. J. D 51, 357 (2009)

    Article  ADS  Google Scholar 

  10. D.J.Y. Marion, G. Huber, P. Berthault, H. Desvaux, Chemphyschem. 9, 1395 (2008)

    Article  Google Scholar 

  11. T. Sleator, E. Hahn, C. Hilbert, J. Clarke, Phys. Rev. B 36(4), 1969 (1987)

    Article  ADS  Google Scholar 

  12. M.A. McCoy, R.R. Ernst, Chem. Phys. Lett. 195(5, 6), 587 (1989)

  13. M. Gueron, J.L. Leroy, J. Magn. Reson. 85, 209 (1989)

    ADS  Google Scholar 

  14. M. Nausner, J. Schlagnitweit, V. Smrecki, X. Yang, A. Jerschow, N. Muller, J. Magn. Reson. 198, 73 (2009)

    Article  ADS  Google Scholar 

  15. K. Chandra, J. Schlagnitweit, C. Wohlschlager, A. Jerschow, N. Muller, J. Phys. Chem. Lett. 4, 3853 (2013)

    Article  Google Scholar 

  16. H. Desvaux, Prog. NMR Spectrosc. 70, 50 (2013)

    Article  Google Scholar 

  17. G. Ferrand, G. Huber, M. Luong, H. Desvaux, J. Chem. Phys. 143, 094201 (2015)

    Article  ADS  Google Scholar 

  18. A. Jurkiewicz, Appl. Magn. Reson. 44(10), 1181 (2013)

    Article  Google Scholar 

  19. M. T. Poschko, V.V. Rodin, J. Schlagnitweit, N. Muller, H. Desvaux, Nat. Commun. 8, (2017). https://doi.org/10.1038/ncomms15379

  20. V. Henner, H. Desvaux, T. Belozerova, D.J.Y Marion, P. Kharebov, A. Klots, J. Chem. Phys. 139, 144111 (2013)

    Article  ADS  Google Scholar 

  21. A. Jurkiewicz, Chem. Phys. Lett. 623, 55 (2015)

    Google Scholar 

  22. A. Sodickson, W.E. Maas, D.G. Cory, J. Magn. Reson. B 110, 298 (1996)

  23. F. Bloch, Phys. Rev. 70(7–8), 460 (1946)

    Article  ADS  Google Scholar 

  24. T.R. Field, A.D. Bain, Appl. Magn. Reson. 38, 167 (2010)

    Article  Google Scholar 

  25. T.R. Field, A.D. Bain, Phys. Rev. E 87(2), 022110–022111 (2013)

    Article  ADS  Google Scholar 

  26. M.P. Augustine, Prog. NMR Spectrosc. 40, 111 (2002)

    Article  Google Scholar 

  27. E. Bendet-Taicher, N. Muller, A. Jerschow, Concepts Magn. Reson. Part B Magn. Reson. Eng. 44(1), 1 (2014)

    Article  Google Scholar 

  28. M.T. Poschko, J. Schlagnitweit, G. Huber, M. Nausner, M. Hornicakova, H. Desvaux, N. Muller, Chemphyschem. 15, 3639 (2014)

    Article  Google Scholar 

  29. J.D. Walls, S.Y. Huang, Y.Y. Lin, J. Chem. Phys. 127, 054507-1 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Jurkiewicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurkiewicz, A. Properties and Edition of NMR Spontaneous Maser Emission Spectra. Appl Magn Reson 50, 709–724 (2019). https://doi.org/10.1007/s00723-019-01113-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01113-z

Navigation