Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 227–242 | Cite as

Simulation and Analysis of Irregular Multicoil B0 Shimming in C-type Permanent Magnets Using Genetic Algorithm and Simulated Annealing

  • Weijie Chen
  • Jie Chen
  • Huijun SunEmail author
  • Zhong Chen
Original Paper
  • 114 Downloads

Abstract

Multicoil (MC) B0 shimming, a new shimming technology developed in the recent years, exhibits unique advantages. Irregularly shaped coils can further improve the shimming effect of the MC, but they increase the difficulty and complexity of MC design. In this paper, the shimming characteristics of MC in C-type permanent magnets are studied. Aiming at improving the efficiency of finding the optimal shape for irregular MC, this paper presents a method that uses genetic algorithm and simulated annealing (GASA) to optimize irregular MC shapes for shimming. By simulating the shimming of the irregular MC of the flat-plate model and shoulder-joint model in C-type permanent magnets, the effects of parameters such as complexity, size, and number of groups of coils are analyzed. The shimming of MC in superconducting magnets and permanent magnets is compared and the optimization efficiencies of the genetic algorithms and genetic–annealing algorithms are compared. The results show that an irregular MC can achieve a better shimming effect for a locally nonuniform B0 field in a sample boundary region of a C-type permanent magnet. GASA is found to be a more stable and highly efficient optimization method.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant 11475142.

References

  1. 1.
    A.M. Blamire, D.L. Rothman, T. Nixon, Magn. Reson. Med. 36(1), 159–165 (1996)CrossRefGoogle Scholar
  2. 2.
    D.H. Kim, E. Adalsteinsson, G.H. Glover, D.M. Spielman, Magn. Reson. Med. 48(4), 715–722 (2002)CrossRefGoogle Scholar
  3. 3.
    J.W. Pan, L.M. Lo, H.P. Hetherington, Magn. Reson. Med. 68(4), 1007–1017 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Roméo, D.I. Hoult, Magn. Reson. Med. 1(1), 44–65 (1984)CrossRefGoogle Scholar
  5. 5.
    R.A. de Graaf, in Proceedings of the 22th Annual Meeting of the International Society for Magnetic Resonance in Medicine (Milan, Milan, Italy, 10-16 May 2014), p. 000380Google Scholar
  6. 6.
    C. Juchem, T.W. Nixon, S. McIntyre, D.L. Rothman, R.A. de Graaf, J. Magn. Reson. 204(2), 281–289 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    C. Juchem, P.B. Brown, T.W. Nixon, S. McIntyre, D.L. Rothman, R.A. de Graaf, Magn. Reson. Med. 66(3), 893–900 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Juchem, P.B. Brown, T.W. Nixon, S. McIntyre, V.O. Boer, D.L. Rothman, R.A. de Graaf, J. Magn. Reson. 212(2), 280–288 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Terada, S. Kono, K. Ishizawa, S. Inamura, T. Uchiumi, D. Tamada, K. Kose, J. Magn. Reson. 230(5), 125–133 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    H. Han, A.W. Song, T.K. Truong, Magn. Reson. Med. 70(1), 241–247 (2013)CrossRefGoogle Scholar
  11. 11.
    T.K. Truong, D. Darnell, A.W. Song, NeuroImage 103(11), 235–240 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Darnell, Y. Ma, H. Wang, F. Robb, A.W. Song, T.K. Truong, Magn. Reson. Med. 80(1), 371–379 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Darnell, T.K. Truong, A.W. Song, Magn. Reson. Med. 77(5), 2077–2086 (2017)CrossRefGoogle Scholar
  14. 14.
    J.P. Stockmann, T. Witzel, B. Keil, J.R. Polimeni, A. Mareyam, C. LaPierre, K. Setsompop, L.L. Wald, Magn. Reson. Med. 75(1), 441–451 (2016)CrossRefGoogle Scholar
  15. 15.
    J.P. Stockmann, B. Guerin, L.L. Wald, in Proceedings of the 24th Annual Meeting of the International Society for Magnetic Resonance in Medicine (Singapore, 7-13 May 2016), p. 1153Google Scholar
  16. 16.
    I. Zivkovic, C. Mirkes, K. Scheffler, in Proceedings of the 24th Annual Meeting of the International Society for Magnetic Resonance in Medicine (Singapore, 7-13 May 2016), p. 1152Google Scholar
  17. 17.
    P.T. While, J.G. Korvink, IEEE Trans. Biomed. Eng. 61(6), 1614–1620 (2014)CrossRefGoogle Scholar
  18. 18.
    I. Zivkovic, I. Tolstikhin, B. Schoelkopf, K. Scheffler, in Proceedings of the 25th Annual Meeting of the International Society for Magnetic Resonance in Medicine (Honolulu, Hawaii, USA, 22-27 April 2017), p. 4338Google Scholar
  19. 19.
    N.R. Shaw, R.E. Ansorge, IEEE Trans. Appl. Supercond. 12(1), 733–736 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    V. Cavaliere, A. Formisano, R. Martone, M. Primizia, IEEE Trans. Appl. Supercond. 10(1), 1376–1379 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D. Yau, S. Crozier, Prog. Electromagn. Res. 39, 177–192 (2003)CrossRefGoogle Scholar
  22. 22.
    R.S. Sexton, R.E. Dorsey, J.D. Johnson, Eur. J. Oper. Res. 114(3), 589–601 (1999)CrossRefGoogle Scholar
  23. 23.
    G.L. Khym, H.J. Yang, C.H. Oh, Curr. Appl. Phys. 10(6), 1427–1435 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Crozier, D.M. Doddrell, J. Magn. Reson. 103(3), 354–357 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Moon, K.C. Goodrich, J.R. Hadley, D.L. Parker, Concepts Magn. Reson. Part B Magn. Reson. Eng. 35B(1), 23–31 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Soares, C.H. Antunes, Neurocomputing 121(18), 498–511 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic ScienceFujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen UniversityXiamenChina

Personalised recommendations