Skip to main content
Log in

Photophysical Properties of Zinc Coproporphyrin I Tetraethyl Ester in Different Solvents Probed by TR EPR Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The results of time-resolved electron paramagnetic resonance (TR EPR) of zinc complexes of coproporphyrin I tetraethyl ester (ZnCPP-1) in solvents: o-terphenyl and chloroform/isopropanol mixture on the time after the laser pulse photoexcitation have been presented. The TR EPR spectra of the ZnCPP-1 complex in o-terphenyl indicate the presence of only one type of the photoexcited triplet state, while in the solution of the chloroform/isopropanol, the TR EPR spectrum is a sum of two different triplet spectra. The triplet spectrum detected in o-terphenyl is described by the zero-field splitting (ZFS) parameters and the aaa/eee electron spin polarization (ESP) pattern characteristic of zinc porphyrin derivative triplets. This spectrum is assigned to the monomeric ZnCPP-1 complex. A new spectrum detected together with the monomer spectrum in the chloroform/isopropanol has a reverse ESP pattern. The new spectrum is especially clearly observed in the time interval of 1.4–3 μs after the laser pulse when the intensity of the spectrum from the monomer triplet is substantially reduced. In addition to the reverse ESP pattern, an increase in the ZFS parameters of the new spectrum is observed. The density functional theory (DFT) calculation of the monomer and dimer structures and their energies shows that the dimer formation is energetically favorable. On the basis of the TR EPR data and DFT calculation, we suppose that the ZnCPP-1 complex is dimerized in the solution of the chloroform and isopropanol mixture and the new spectrum is most likely assigned to the dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.P. Beletskaya, V.S. Tyurin, A.Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 109, 1659–1713 (2009)

    Article  Google Scholar 

  2. C.M. Drain, A. Varotto, I. RadivojevicI, Chem. Rev. 109, 1630–1658 (2009)

    Article  Google Scholar 

  3. D. Gust, T.A. Moore, A.L. Moore, Acc. Chem. Res. 34, 40–41 (2001)

    Article  Google Scholar 

  4. D. Holten, D.F. Bocian, J.S. Lindsey, Acc. Chem. Res. 35(1), 57–69 (2002)

    Article  Google Scholar 

  5. D. Kim, A. Osuka, Acc. Chem. Res. 37(10), 735–745 (2004)

    Article  Google Scholar 

  6. N. Aratani, A. Osuka, H.S. Cho, D. Kim, J. Photochem. Photobiol. C Photochem. Rev. 3, 25–52 (2002)

    Article  Google Scholar 

  7. H. Meier, Angew. Chem. Int. Ed. 2009, 3911–3913 (2009)

    Article  Google Scholar 

  8. K. Sugiyasu, M. Takeuchi, Chem. Eur. J. 2009, 6350–6362 (2009)

    Article  Google Scholar 

  9. J.-H. Chou, M.E. Kosal, H.S. Nalwa, N.A. Rakow, K.S. Suslick, in Porphyrin Handbook/Applications: Past, Present and Future, vol. 6, ed. by K.M. Kadish, K.M. Smith, R. Guillard (Academic Press, San Diego, 2000), p. 41

    Google Scholar 

  10. A. Ambroise, C. Kirmaier, R.W. Wagner, R.S. Loewe, D.F. Bocian, D. Holten, J.S. Lindsey, J. Org. Chem. 67, 3811–3826 (2002)

    Article  Google Scholar 

  11. S. Punidha, M. Ravikanth, Tetrahedron 64, 8016–8028 (2008)

    Article  Google Scholar 

  12. J.K. Molloy, O. Kotova, R.D. Peacock, T. Gunnlaugsson, Org. Biomol. Chem. 10, 314–322 (2012)

    Article  Google Scholar 

  13. Richard W. Wagner, Jonathan S. Lindsey, Jyoti Seth, Vaithianathan Palaniappan, David F. Bocian, J. Am. Chem. Soc. 118, 3996–3997 (1996)

    Article  Google Scholar 

  14. C. Schubert, J.T. Margraf, T. Clark, D.M. Guldi, Chem. Soc. Rev. 44, 988–998 (2015)

    Article  Google Scholar 

  15. S.S. Kim, S.I. Weissman, J. Magn. Reson. 24, 167 (1976)

    ADS  Google Scholar 

  16. H. Levanon, J.R. Norris, Chem. Rev. 78, 175 (1978)

    Article  Google Scholar 

  17. S.R. Langhoff, E.R. Davidson, M. Gouterman, W.R. Leenstra, A.L. Kwiram, J. Chem. Phys. 62, 169–176 (1975)

    Article  ADS  Google Scholar 

  18. A. Scherz, H. Levanon, J. Phys. Chem. 84, 324–336 (1980)

    Article  Google Scholar 

  19. O. Gonen, H. Levanon, J. Phys. Chem. 89(9), 1637–1643 (1985)

    Article  Google Scholar 

  20. O. Gonen, H. Levanon, J. Chem. Phys. 84, 4132 (1986)

    Article  ADS  Google Scholar 

  21. S.S. Kim, S.I. Weissman, Rev. Chem. Intermed. 3, 107 (1979)

    Article  Google Scholar 

  22. H. Murai, T. Imamura, K. Obi, J. Phys. Chem. 86, 3279 (1982)

    Article  Google Scholar 

  23. H. Murai, T. Imamura, K. Obi, Chem. Phys. Lett. 87, 295 (1982)

    Article  ADS  Google Scholar 

  24. M. Terazima, S. Yamauchi, N. Hirota, Chem. Phys. Lett. 98, 145 (1983)

    Article  ADS  Google Scholar 

  25. T.K. Chandrashekar, H. van Willigen, M.H. Ebersole, J. Phys. Chem. 88, 4326 (1984)

    Article  Google Scholar 

  26. K. Ishii, S. Yamauchi, Y. Ohba, M. Iwaizumi, I. Uchiyama, N. Hirota, K. Maruyama, A. Osuka, J. Phys. Chem. 98, 9431 (1994)

    Article  Google Scholar 

  27. K. Ishii, Y. Ohba, M. Iwaizumi, S. Yamauchi, J. Phys. Chem. 100, 3839 (1996)

    Article  Google Scholar 

  28. K. Ishii, T. Ishizaki, Y. Ohba, S. Karasawa, N. Koga, S. Yamauchi, Appl. Magn. Reson. 23, 377 (2003)

    Article  Google Scholar 

  29. P.J. Angiolillo, K. Susumu, H.T. Uyeda, V.S.Y. Lin, R. Shediac, M.J. Therien, Synth. Metals 116, 247–253 (2001)

    Article  Google Scholar 

  30. O.I. Gnezdilov, A.E. Maambetov, A.A. Obynochny, S.K.M. Salikhov, Appl. Magn. Reson. 25, 157–198 (2003)

    Article  Google Scholar 

  31. S. Yamauchi, Bull. Chem. Soc. Jpn. 77, 1255–1268 (2004)

    Article  Google Scholar 

  32. S. Yamauchi, M. Tanabe, K. Takahashi, I.S.M. Saiful, H. Matsuoka, Y. Ohba, Appl. Magn. Reson. 37, 317–323 (2010)

    Article  Google Scholar 

  33. S. Yamauchi, K. Takahashi, S.M. Saiful Islam, Y. Ohba, V. Tarasov, J. Phys. Chem. B. 114, 14559–14563 (2010)

    Article  Google Scholar 

  34. T.K. Chandrashekar, H. van Willigen, Chem. Phys. Lett. 106, 237–241 (1984)

    Article  ADS  Google Scholar 

  35. P. Jagermann, M. Plato, K. Mobius, Mol. Phys. 78, 1057–1074 (1993)

    Article  ADS  Google Scholar 

  36. R. Shediac, M.H.B. Gray, H.T. Uyeda, R.C. Johnson, J.T. Hupp, P.J. Angiolillo, M.J. Therien, J. Am. Chem. Soc. 12(29), 7017–7033 (2000)

    Article  Google Scholar 

  37. C.E. Tait, P. Neuhaus, H.L. Anderson, ChR Timmel, J. Am. Chem. Soc. 137, 6670–6679 (2015)

    Article  Google Scholar 

  38. A.A. Sukhanov, L.I. Savostina, V.K. Voronkova, E.A. Mikhalitsyna, V.S. Tyurin, Appl. Magn. Reson. 47, 1295–1304 (2016)

    Article  Google Scholar 

  39. P.J. Angiolillo, V.S.-Y. Lin, J.M. Vanderkooi, M.J. Therien, J. Am. Chem. Soc. 117, 12514–12527 (1995)

    Article  Google Scholar 

  40. P.J. Angiolillo, H.T. Uyeda, T.V. Duncan, M.J. Therien, J. Phys. Chem. B 108, 11893–11903 (2004)

    Article  Google Scholar 

  41. Sabine Richert, Claudia E. Tait, Christiane R. Timmel, J. Magn. Reson. 280, 103–116 (2017)

    Article  ADS  Google Scholar 

  42. A.A. Sukhanov, Y.E. Kandrashkin, V.K. Voronkova, V.S. Tyurin, Appl. Magn. Reson. 49, 239–253 (2018)

    Article  Google Scholar 

  43. S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42–55 (2006)

    Article  ADS  Google Scholar 

  44. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  45. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785–789 (1988)

    Article  ADS  Google Scholar 

  46. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01 (Gaussian Inc, Wallingford CT, 2004)

Download references

Acknowledgements

We are grateful to Professor Kev Salikhov for his comments and useful discussion. This work was supported in part by the Russian Foundation for Basic Research (project no. 16-03-00586) and the Program of the Presidium of the Russian Academy of Sciences no. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Voronkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanov, A.A., Tyurin, V.S., Budnikova, I.K. et al. Photophysical Properties of Zinc Coproporphyrin I Tetraethyl Ester in Different Solvents Probed by TR EPR Spectroscopy. Appl Magn Reson 50, 455–468 (2019). https://doi.org/10.1007/s00723-018-1091-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1091-1

Navigation