Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 425–439 | Cite as

The Structure and Internal Dynamics of R6-p-C6H4-R6 Biradical: EPR, X-ray Crystallography and DFT Calculations

  • A. I. KokorinEmail author
  • O. I. Gromov
  • P. V. Dorovatovskii
  • V. A. Lazarenko
  • V. N. Khrustalev
  • K. Hideg
  • T. Kálai
Original Paper


A purposefully synthesized nitroxide biradical R6-p-C6H4-R6 (B1), where R6 is the 1-oxyl-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine group with a relatively short distance between the two radical sites, has been studied by X-band electron paramagnetic resonance (EPR) spectroscopy. Hyperfine splitting (hfs) constants on the 14N atoms, electron spin exchange integral |J|, and the distance between the two N–O fragments rNO–NO were experimentally measured. Density functional theory, DFT, calculations were performed using the ORCA program package. The optimized geometry was compared with X-ray crystallographic data and theoretical hfs constants were compared with the respective experimental EPR values. It is concluded that the current quantum chemical approaches provide good results in calculating hfs constants as well as some other EPR parameters. It is confirmed that the intramolecular electron spin exchange in biradicals analogous to B1 is realized by the indirect mechanism rather than direct collision of the N–O· groups. It is also shown that one can calculate and predict values of |J| in other similar biradicals based on the principle of “attenuation coefficients.



This work was supported in part by the RUDN University Program “5-100”. Synchrotron radiation-based single-crystal X-ray diffraction measurements were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007). The study was also supported in part by Russian Foundation for Basic Research (Grant No 18-33-00866-mol-a), the Supercomputing Center of M. V. Lomonosov Moscow State University [45], and through the Program of Fundamental Research of the Presidium of RAS (No. 1.26П). The work was supported in part by Hungarian National Research Development and Innovation Office (OTKA FK 124331). AIK thanks Dr. A. A. Shubin (Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk) who provided us with his computer program package of EPR spectra simulation.


  1. 1.
    E.G. Rozantsev, Free Nitroxyl Radicals (Plenum Press, New York, 1970)CrossRefGoogle Scholar
  2. 2.
    V.N. Parmon, A.I. Kokorin, G.M. Zhidomirov, Stable Biradicals (Nauka, Moscow, 1980)Google Scholar
  3. 3.
    E.G. Rozantsev, R.I. Zhdanov (eds.), Nitroxide Radicals. Synthesis, Chemistry, Applications (Nauka, Nauka, 1987)Google Scholar
  4. 4.
    L.B. Volodarsky (ed.), Nitroxide. Synthesis, Properties, Applications, vol. 1, 2 (CRC Press, Boca Raton, 1988)Google Scholar
  5. 5.
    A. Rassat, Pure Appl. Chern. 62, 223 (1990)CrossRefGoogle Scholar
  6. 6.
    A.I. Kokorin, Appl. Magn. Reson. 26, 253 (2004)CrossRefGoogle Scholar
  7. 7.
    M.T. Lemaire, Pure Appl. Chem. 76, 277 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Baumgarten, in: World Scientific Reference on Spin in Organics, vol. 4, ed. by J.S. Miller (World Scientific Publishing Co Pte Ltd., Singapore, 2017), pp. 1–93 Google Scholar
  9. 9.
    M. Abe, Chem. Rev. 113, 7011 (2013)CrossRefGoogle Scholar
  10. 10.
    A.B. Shapiro, M.G. Goldfield, E.G. Rozantsev, Tetrahedron Lett. 14, 2183 (1973)CrossRefGoogle Scholar
  11. 11.
    V.V. Pavlikov, A.B. Shapiro, E.G. Rozantsev, Izv. AN SSSR, Ser. Khim. No. 1, 128 (1980)Google Scholar
  12. 12.
    V.V. Pavlikov, V.V. Muraviev, A.B. Shapiro, Izv. AN SSSR, Ser. Khim. No. 5, 1200 (1980)Google Scholar
  13. 13.
    S. Torii, T. Hase, M. Kuroboshi, C. Amatore, A. Jutand, H. Kawafuchi, Tetrahedron Lett. 38, 7391 (1997)CrossRefGoogle Scholar
  14. 14.
    E.G. Rozantsev, O.A. Ozhogina, R.R. Rakhimov, A.I. Prokof’ev, Mol. Phys. 76, 1009 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    A.I. Kokorin, V.V. Pavlikov, A.B. Shapiro, Proc. Acad. Sci. USSR, Doklady Phys. Chem. 253, 147 (1980)Google Scholar
  16. 16.
    A.B. Shapiro, V.N. Parmon, V.V. Pavlikov, V.I. Rubtsov, E.G. Rozantsev, Izv. AN SSSR, Ser. Khim. No. 2, 449 (1980)Google Scholar
  17. 17.
    A.I. Kokorin, V.A. Tran, K. Rasmussen, G. Grampp, Appl. Magn. Reson. 30, 35 (2006)CrossRefGoogle Scholar
  18. 18.
    V.A. Tran, A.I. Kokorin, G. Grampp, K. Rasmussen, Appl. Magn. Reson. 35, 389 (2009)CrossRefGoogle Scholar
  19. 19.
    A.I. Kokorin, E.N. Golubeva, B. Mladenova, V.A. Tran, T. Kalai, K. Hideg, G. Grampp, Appl. Magn. Reson. 44, 1041 (2013)CrossRefGoogle Scholar
  20. 20.
    A.I. Kokorin, S. Landgraf, A.B. Shapiro, G. Grampp, Appl. Magn. Reson. 45, 125 (2014)CrossRefGoogle Scholar
  21. 21.
    O.I. Gromov, E.N. Golubeva, V.N. Khrustalev, T. Kálai, K. Hideg, A.I. Kokorin, Appl. Magn. Reson. 45, 981 (2014)CrossRefGoogle Scholar
  22. 22.
    A.I. Kokorin, O.I. Gromov, T. Kálai, K. Hideg, Appl. Magn. Reson. 47, 1283 (2016)CrossRefGoogle Scholar
  23. 23.
    A.I. Kokorin, R.B. Zaripov, O.I. Gromov, A.A. Sukhanov, T. Kálai, E. Lamperth, K. Hideg, Appl. Magn. Reson. 47, 1057 (2016)CrossRefGoogle Scholar
  24. 24.
    A.I. Kokorin, R.B. Zaripov, O.I. Gromov, K. Hideg, T. Kálai, Appl. Magn. Reson. 49, 137 (2018)CrossRefGoogle Scholar
  25. 25.
    T. Kálai, J. Jekő, Z. Berente, K. Hideg, Synthesis 38, 439 (2006)Google Scholar
  26. 26.
    J.A. Riddick, W.B. Bunger, K.T. Sakano, in: Techniques of Chemistry. Vol. II: Organic Solvents, Physical Chemistry and Methods of Purification (Wiley, New York, 1986). p. 785Google Scholar
  27. 27.
    Yu.N. Molin, K.M. Salikhov, K.I. Zamaraev, Spin Exchange (Springer, Berlin, 1980)CrossRefGoogle Scholar
  28. 28.
    A.I. Kokorin, V.N. Parmon, A.A. Shubin, Atlas of Anisotropic EPR Spectra of Nitroxide Biradicals (Nauka, Moscow, 1984)Google Scholar
  29. 29.
    S.H. Glarum, J.H. Marshall, J. Chem. Phys. 47, 1374 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    H. Lemaire, J. Chim. Phys. 64, 559 (1967)CrossRefGoogle Scholar
  31. 31.
    V.N. Parmon, G.M. Zhidomirov, Mol. Phys. 27, 367 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    Ya.S. Lebedev, O.Ya. Grinberg, A.A. Dubinsky, O.G. Poluektov, in Bioactive Spin Labels, ed. by R.I. Zhdanov (Springer, Berlin, 1992), pp. 228–254Google Scholar
  33. 33.
    T.G.G. Battye, L. Kontogiannis, O. Johnson, H.R. Powell, A.G.W. Leslie, Acta Cryst. D67, 271 (2011)Google Scholar
  34. 34.
    P.R. Evans, Acta Cryst. D62, 72 (2006)Google Scholar
  35. 35.
    G.M. Sheldrick, Acta Cryst. C71, 3 (2015)Google Scholar
  36. 36.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    F. Neese, J. Chem. Phys. 127, 164112 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    V. Barone, P. Cimino, E. Stendardo, J. Chem. Theory Comput. 4, 751 (2008)CrossRefGoogle Scholar
  39. 39.
    F. Neese, Software Update: The ORCA Program System, Version 4.0, Wiley Interdiscip. Rev. Comput. Mol. Sci. e1327, IF 8.836 (2017).
  40. 40.
    V.E. Shklover, I.A. Zamaev, YuT Struchkov, T.V. Medvedeva, YuV Korshak, A.A. Ovchinnikov, V.N. Spector, Z. Kristallogr. 191, 9 (1990)CrossRefGoogle Scholar
  41. 41.
    V.A. Igonin, V.E. Shklover, YuT Struchkov, O.L. Lazareva, G.A. Vinogradov, Acta Cryst. C46, 776 (1990)Google Scholar
  42. 42.
    D.W. Wiley, J.C. Calabrese, R.L. Harlow, J.S. Miller, Angew. Chem. 30, 450 (1991)CrossRefGoogle Scholar
  43. 43.
    J.W. Bats, O. Frolow, J.W. Engels, Acta Cryst. E65, o529 (2009)Google Scholar
  44. 44.
    A.V. Bogdanov, AKh Vorobiev, PhysChemChemPhys. 18, 31144 (2016)Google Scholar
  45. 45.
    V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (Chapman & Hall/CRC Computational Science, CRC Press, Boca Raton, USA, 2013), pp. 283–307Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • A. I. Kokorin
    • 1
    • 2
    Email author
  • O. I. Gromov
    • 3
  • P. V. Dorovatovskii
    • 4
  • V. A. Lazarenko
    • 4
  • V. N. Khrustalev
    • 4
    • 5
  • K. Hideg
    • 6
  • T. Kálai
    • 6
    • 7
  1. 1.N. N. Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussian Federation
  2. 2.Plekhanov Russian University of EconomicsMoscowRussian Federation
  3. 3.Chemistry DepartmentM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  4. 4.National Research Center “Kurchatov Institute”MoscowRussian Federation
  5. 5.Peoples’ Friendship, University of Russia (RUDN University)MoscowRussian Federation
  6. 6.Institute of Organic and Medicinal Chemistry, Medical SchoolUniversity of PécsPécsHungary
  7. 7.Szentágothai Research CenterPécsHungary

Personalised recommendations