Skip to main content
Log in

Ultra-Narrow Low-Field Nuclear Spin Resonance in NV Centers in a Bulk Diamond Crystal

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Negatively charged nitrogen vacancy (NV) color centers in diamond crystals have been intensively studied in the last few decades with the use of the optically detected magnetic resonance method which usually implies resonance excitation using a DC or pulsed drive field in the gigahertz range (MW field). Various techniques for multi-frequency MW excitation of magnetic resonance in the nuclear structure of 14N atoms in NV centers were developed. Most of them use MW excitation in combination with RF modulation or direct RF excitation of nuclear transition. Here, we report on the possibility to detect ultra-narrow resonances in the nuclear structure of 14N using the ODMR methods with single-frequency DC RF excitation of the nuclear transition at 4.95 MHz. The resonances detected in a bulk sample in weak (0–10 mT) magnetic fields show approximately 7 kHz width HWHM, corresponding to T *2  = 23 μs, and they seem to be insensitive to the magnetic field direction. These resonances may be of interest for solid-state quantum information processing, as well as for quantum magnetometry, especially in biological and medical applications where a strong MW drive field may be undesirable. We demonstrate that optical pumping can be used to create and detect not only the electron orientation, but also the nuclear one, even in the state with a zero electron spin projection. This allows sensitive non-pulsed detection methods like coherent population trapping to be applied to nuclear spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4, 810 (2008)

    Article  Google Scholar 

  2. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nature 455, 648 (2008)

    Article  ADS  Google Scholar 

  3. V.M. Acosta, E. Bauch, A. Jarmola, L.J. Zipp, M.P. Ledbetter, D. Budker, Appl. Phys. Lett. 97, 174104 (2010)

    Article  ADS  Google Scholar 

  4. A.K. Dmitriev, A.K. Vershovskii, JOSA B 33, B1–B4 (2016)

    Article  Google Scholar 

  5. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  Google Scholar 

  6. V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 102, 057403 (2009)

    Article  ADS  Google Scholar 

  7. A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V.M. Acosta, D. Budker, Appl. Phys. Lett. 109, 053505 (2016)

    Article  ADS  Google Scholar 

  8. H. Zheng, G. Chatzidrosos, A. Wickenbrock, L. Bougas, R. Lazda, A. Berzins, F.H. Gahbauer, M. Auzinsh, R. Ferber, D. Budker, arXiv:1701.06838v1 (2017)

  9. M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007)

    Article  Google Scholar 

  10. M. Chen, M. Hirose, P. Cappellaro, Phys. Rev. B 92, 020101 (2015)

    Article  ADS  Google Scholar 

  11. C.S. Shin, M.C. Butler, H-J. Wang, C.E. Avalos, S.J. Seltzer, R-B. Liu, A. Pines, V.S. Bajaj, Phys. Rev. B 89, 205202 (2014)

    Article  ADS  Google Scholar 

  12. A. Dréau, P. Spinicelli, J.R. Maze, J.-F. Roch, V. Jacques, Phys. Rev. Lett. 110, 060502 (2013)

    Article  ADS  Google Scholar 

  13. S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, J.M. Baker, Phys. Rev. B 79, 075203 (2009)

    Article  ADS  Google Scholar 

  14. R. Fisher, A. Jarmola, P. Kehayias, D. Budker, Phys. Rev. B 87, 125207 (2013)

    Article  ADS  Google Scholar 

  15. I.V. Fedotov, L.V. Doronina-Amitonova, A.A. Voronin, A.O. Levchenko, S.A. Zibrov, D.A. Sidorov-Biryukov, A.B. Fedotov, V.L. Velichansky, A.M. Zheltikov, Sci. Rep. 4, 5362 (2014)

    Article  ADS  Google Scholar 

  16. B. Smeltzer, J. McIntyre, L. Childress, Phys. Rev. A 80, 050302 (2009)

    Article  ADS  Google Scholar 

  17. F. Bloch, Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  18. E. Arimondo, G. Orriols, Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton K. Vershovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.K., Vershovskii, A.K. Ultra-Narrow Low-Field Nuclear Spin Resonance in NV Centers in a Bulk Diamond Crystal. Appl Magn Reson 50, 599–604 (2019). https://doi.org/10.1007/s00723-018-1075-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1075-1

Navigation