Applied Magnetic Resonance

, Volume 50, Issue 6, pp 769–783 | Cite as

Modeling Spin Hamiltonian Parameters for Fe2+ (S = 2) Adatoms on Cu2N/Cu(100) Surface Using Semiempirical and Density Functional Theory Approaches

  • C. Rudowicz
  • K. Tadyszak
  • T. Ślusarski
  • Marcos Verissimo-AlvesEmail author
  • M. Kozanecki
Original Paper


Transition metal atoms adsorbed on surfaces (adatoms) behaving like magnets are important for potential applications in quantum computing and memory storage. Better insight into their magnetic properties, described by spin Hamiltonian (SH) parameters, is essential. Comprehensive modeling of SH parameters for Fe2+ with spin S = 2 adatoms on various surfaces is carried out using two approaches: (1) semiempirical CF/MSH [based on crystal field (CF) and microscopic spin Hamiltonian (MSH) theory], and (2) density functional theory (DFT). Here preliminary results of modeling of zero-field splitting parameters (ZFSPs) for Fe2+ on Cu2N/Cu(100) surface [for short Fe2+@Cu2N/Cu(100)] are presented. We focus on the orthorhombic second-rank ZFSPs in the conventional notation (D, E) measured for Fe2+@Cu2N/Cu(100). The fourth-rank ZFSP in the Stevens notation (\(B_{k}^{q}\), k = 2, 4) measured for Fe2+ on CuN/Cu(100) surface are considered elsewhere. Using the CF/MSH approach within 5D approximation, the ZFSPs (k = 2, 4) and Zeeman g-factors are calculated for wide range of the microscopic parameters: spin–orbit (λ), spin–spin (ρ) coupling constants, and the crystal field energy levels (∆i). The ρ-contributions and the fourth-rank ZFSPs are found important. Computations of the ZFSPs (D, E) are done using the SIESTA code by mapping of the physical energy levels to those of effective ZFS Hamiltonian. Comparison of the results enables bridging the gap between DFT methods and CF/MSH ones. The present results will also be utilized in ongoing studies of adatoms on other surfaces, single molecule magnets and single-ion magnets.



This work was partially supported by the research grant # UMO-2016/21/B/ST4/02064 from the Polish National Science Center. The DFT computations were performed at the Poznan Supercomputing and Networking Center (Grant no. 353).


  1. 1.
    M. Ternes, Prog. Surf. Sci. 92, 83–115 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Gauyacq, N. Lorente, F.D. Novaes, Prog. Surf. Sci. 87, 63–107 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    F. Delgado, F. Fernández-Rossier, Prog. Surf. Sci. 92, 40–82 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    B. Bryant, A. Spinelli, J.J.T. Wagenaar, M. Gerrits, A.F. Otte, Phys. Rev. Lett. 111, 127203 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    C.F. Hirjibehedin, C.Y. Lin, A.F. Otte, M. Ternes, C.P. Lutz, B.A. Jones, A.J. Heinrich, Science 317, 1199–1203 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970; Dover, New York, 1986)Google Scholar
  7. 7.
    J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance, Elemental Theory and Practical Applications (Wiley, New York, 2007)Google Scholar
  8. 8.
    F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition-Metal Compounds (Elsevier, Amsterdam, 1992)Google Scholar
  9. 9.
    S.K. Misra, Multifrequency Electron Paramagnetic Resonance (Wiley-VCH, Weinheim, 2011); Erratum, S.K. Misra, C. Rudowicz,
  10. 10.
    S. Baumann, W. Paul, T. Choi, C.P. Lutz, A. Ardavan, A.J. Heinrich, Science 350, 417–420 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11–63 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    C. Rudowicz, M. Karbowiak, Coord. Chem. Rev. 287, 28–63 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Boča, Coord. Chem. Rev. 248, 757–815 (2004)CrossRefGoogle Scholar
  14. 14.
    R. Boča, Struct. Bond. 117, 1–264 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Rudowicz, K. Tadyszak, Polyhedron 127, 126–134 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Tumanski, Handbook of Magnetic Measurements (CRC Press Taylor & Francis Group, Boca Raton, 2011)Google Scholar
  17. 17.
    K.H.J. Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Kluwer Academic, New York, 2003)CrossRefGoogle Scholar
  18. 18.
    J. Jensen, A.R. Mackintosh, Rare Earth Magnetism (Clarendon Press, Oxford, 1991)Google Scholar
  19. 19.
    J. Telser, J. Krzystek, A. Ozarowski, J. Biol. Inorg. Chem. 19, 297–318 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Telser, A. Ozarowski, J. Krzystek, Electron Paramagn. Reson. 23, 209–263 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Kozanecki, C. Rudowicz, H. Ohta, T. Sakurai, J. Alloys Compd. 726, 1226–1235 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Zając, I.E. Lipiński, C. Rudowicz, J. Magn. Magn. Mat. 401, 1068–1077 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    C. Rudowicz, H.W.F. Sung, J. Phys. Soc. Jpn. 72(Supplement B), 61–83 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Zając, C. Rudowicz, H. Ohta, T. Sakurai, J. Magn. Magn. Mat. 449, 94–104 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    K. Tadyszak, C. Rudowicz, H. Ohta, T. Sakurai, J. Inorg. Biochem. 175, 36–46 (2017)CrossRefGoogle Scholar
  26. 26.
    T. Sakurai, K. Fujimoto, R. Goto, S. Okubo, H. Ohta, Y. Uwatoko, J. Magn. Reson. 223, 41–45 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    T. Sakurai, K. Fujimoto, R. Matsui, K. Kawasaki, S. Okubo, H. Ohta, K. Matsubayashi, Y. Uwatoko, H. Tanaka, J. Magn. Reson. 259, 108–113 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications (Wiley-VCH, New York, 2000)Google Scholar
  29. 29.
    B. Henderson, R.H. Bartram, Crystal-field Engineering of Solid-State Laser Materials (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  30. 30.
    R.C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998)CrossRefGoogle Scholar
  31. 31.
    M. Wildner, M. Andrut, C. Rudowicz, in Spectroscopic Methods in Mineralogy—European Mineralogical Union Notes in Mineralogy, vol. 6, ed. by A. Beran, E. Libowitzky (Eötvös University Press, Budapest, 2004), pp. 93–143Google Scholar
  32. 32.
    P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, 10441–10444 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745–2779 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    C. Rudowicz, K. Tadyszak, T. Slusarski, M. Verissimo-Alves, in Book of Abstracts of the V Forum EMR-PL (Kudowa Zdrój, Poland, 5–8 June 2018) Plenary Lecture PL4Google Scholar
  35. 35.
    M. Verissimo-Alves, T. Ślusarski, C. Rudowicz, in Book of Abstracts of the V Forum EMR-PL (Kudowa Zdrój, Poland, 5–8 June 2018) Poster P21Google Scholar
  36. 36.
    T. Ślusarski, M. Verissimo-Alves, C. Rudowicz, in Book of Abstracts of the V Forum EMR-PL (Kudowa Zdrój, Poland, 5–8 June 2018) Poster P20Google Scholar
  37. 37.
    J.W. Nicklas, A. Wadehra, J.W. Wilkins, J. Appl. Phys. 110, 123915 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Spinelli, B. Bryant, F. Delgado, J. Fernández-Rossier, A.F. Otte, Nat. Mater. 13, 782–785 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Gauyacq, N. Lorente, Phys. Rev. B 94, 045420 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    S. Yan, D.-J. Choi, J.A.J. Burgess, S. Rolf-Pissarczyk, S. Loth, Nat. Nanotechnol. 10, 40–45 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    C. Rudowicz, J. Phys. C Solid State Phys. 18, 1415-1430 (1985), Erratum: ibidem 18, 3837 (1985)Google Scholar
  42. 42.
    C. Rudowicz, C.Y. Chung, J. Phys. Condens. Matter 16, 5825–5847 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    C. Rudowicz, H.W.F. Sung, Physica B 337, 204–220 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    C. Rudowicz, H.W.F. Sung, Manual for the package MSH/VBA (2004)—internal City University of Hong Kong Report (unpublished)Google Scholar
  45. 45.
    Y.Y. Zhou, C.L. Li, Phys. Rev. B 48, 16489–16499 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    C.Y. Jiang, M.L. Du, Y.Y. Zhou, Phys. Rev. B 50, 949–954 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    C. Rudowicz, Y.Y. Zhou, J. Phys. Chem. Solids 60, 17–27 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    J. Nehrkorn, A. Schnegg, K. Holldack, S. Stoll, Phys. Rev. Lett. 114, 010801 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    G.H. Daalderop, P.J. Kelly, M.F.H. Schuurmans, Phys. Rev. B 41, 11919–11937 (1990)ADSCrossRefGoogle Scholar
  51. 51.
    H.F. Jansen, Phys. Rev. B 59, 4699–4701 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    P. Rivero, V.M. García-Suárez, D. Pereñiguez, K. Utt, Y. Yang, L. Bellaiche, K. Park, J. Ferrer, S. Barraza-Lopez, Comput. Mater. Sci. 98, 372–389 (2015)CrossRefGoogle Scholar
  53. 53.
    J.P. Perdew, K. Burke, M. Erzenhof, Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993–2006 (1991)ADSCrossRefGoogle Scholar
  55. 55.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943–954 (1991)ADSCrossRefGoogle Scholar
  56. 56.
    R. Žitko, Th Pruschke, New J. Phys. 12, 063040 (2010)CrossRefGoogle Scholar
  57. 57.
    H.-G. Liu, Y. Mei, W.-C. Zheng, Chem. Phys. Lett. 554, 214–218 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    M.P. Hendrich, P.G. Debrunner, Biophys. J. 56, 489–506 (1989)CrossRefGoogle Scholar
  59. 59.
    A. Khorobrykh et al., ChemBioChem 14, 1725–1731 (2013)CrossRefGoogle Scholar
  60. 60.
    D.S. Marlin et al., J. Am. Chem. Soc. 127, 6095–6108 (2005)CrossRefGoogle Scholar
  61. 61.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  62. 62.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017)CrossRefGoogle Scholar
  63. 63.
    S.K. Panda, I. Di Marco, O. Grånäs, O. Eriksson, J. Fransson, Phys. Rev. B 93, 140101 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    M. Kozanecki, C. Rudowicz, in Book of Abstracts of the V Forum EMR-PL (Kudowa Zdrój, Poland, 5–8 June 2018) Poster P22Google Scholar
  65. 65.
    F. Neese, Comput. Mol. Sci. 2, 73 (2012)CrossRefGoogle Scholar
  66. 66.
    F. Neese, J. Chem. Phys. 127, 164112 (2007)ADSCrossRefGoogle Scholar
  67. 67.
    F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra‐Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, J. Comput. Chem. 37, 506–541 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryA. Mickiewicz UniversityPoznańPoland
  2. 2.Polish Academy of Sciences, Institute of Molecular PhysicsPoznańPoland
  3. 3.Departamento de FisicaUniversidade Federal FluminenseVolta RedondaBrazil

Personalised recommendations