Applied Magnetic Resonance

, Volume 49, Issue 12, pp 1355–1368 | Cite as

Orientation Selective 2D-SIFTER Experiments at X-Band Frequencies

  • A. M. Bowen
  • N. Erlenbach
  • P. van Os
  • L. S. Stelzl
  • S. Th. Sigurdsson
  • T. F. PrisnerEmail author
Original Paper


Frequency-correlated 2D SIFTER with broadband pulses at X-band frequencies can be used to determine the inter-spin distance and relative orientation of nitroxide moieties in macromolecules when the flexibility of the spin-labels is restricted. At X-band frequencies the EPR spectrum of nitroxides is governed by the strongly anisotropic nitrogen hyperfine coupling. For rigid spin-labels, where the orientation of the inter-connecting vector R correlates to the relative orientations of the nitroxide labels, the dipolar oscillation frequency varies over the EPR spectral line shape. Broadband shaped pulses allow excitation of the complete nitroxide EPR spectra. In this case, Fourier transform of the echo signal gives both fast and direct access to the orientation dependent dipole coupling. This allows determination of not only the inter-spin distance R, but also their mutual orientation. Here, we show the application of the frequency-correlated 2D SIFTER experiment with broadband pulses to a bis-nitroxide model compound and to a double stranded DNA sample. In both molecules, there is restricted internal mobility of the two spin-labels. The experimental results are compared to orientation selective pulsed electron double resonance (PELDOR) experiments and simulations based on a simple geometrical model or MD simulations describing the conformational flexibility of the molecules. Fourier transformation of the SIFTER echo signal yields orientation selective dipolar time traces over the complete EPR-spectral range. This leads to an improved frequency resolution and either to a reduced experimental measurement time or a larger span of frequency offsets measured compared to orientation selective PELDOR experiments. The experimental potential and limitations of the 2D SIFTER method for samples containing rigid spin-labels will be discussed.



We acknowledge financial support from the German Research Foundation (CRC902: Molecular Principles of RNA Based Regulation and SPP1601: New Frontiers in Sensitivity for EPR Spectroscopy). L.S. S is grateful for support from the Max Planck Society. A.M.B was supported by the Marie Curie GOIN program, and gratefully acknowledges her current fellowship support from the Royal Society and EPSRC for a Dorothy Hodgkin Fellowship (DH160004). We thank Dr. Plackmeyer for the synthesis of the bis-nitroxide model compound.


  1. 1.
    A.D. Milov, K. Salikhov, M. Shchirov, Sov. Phys. Solid State 23, 975 (1981)Google Scholar
  2. 2.
    A.D. Milov, A. Ponomarev, Y. Tsvetkov, Chem. Phys. Lett. 110, 67 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    R. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, H.W. Spiess, Angw. Chemie Int. Ed. 37, 2833 (1998)CrossRefGoogle Scholar
  4. 4.
    M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    P.P. Borbat, J.H. Freed, Chem. Phys. Lett. 313, 145 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    L.V. Kulik, S.A. Dzuba, I.A. Grigoryev, Y.D. Tsvetkov, Chem. Phys. Lett. 343, 315 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    S. Milikisyants, E.J.J. Groenen, M. Huber, J. Magn. Reson. 192, 275 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    G. Jeschke, M. Pannier, A. Godt, H.W. Spiess, Chem. Phys. Lett. 331, 243 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    C. Altenbach, T. Marti, H. Khorana, W. Hubbell, Science (80-.) 248, 1088 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Marko, T.F. Prisner, Phys. Chem. Chem. Phys. 15, 619 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Gorcester, J.H. Freed, J. Chem. Phys. 88, 60 (1988)CrossRefGoogle Scholar
  13. 13.
    S. Saxena, J.H. Freed, J. Phys. Chem. A 101, 181 (1997)CrossRefGoogle Scholar
  14. 14.
    P.P. Borbat, J. H. Freed, in EPR Spectroscopy: Fundamentals and Methods (eMagRes Books), ed. by D. Goldfarb and S. Stoll, Chapt. 20 (Wiley, Chichester, 2018)Google Scholar
  15. 15.
    A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230, 27 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P. Schöps, P.E. Spindler, A. Marko, T.F. Prisner, J. Magn. Reson. 250, 55 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    G.E. Merz, P.P. Borbat, A.J. Pratt, E.D. Getzoff, J.H. Freed, B.R. Crane, Biophys. J. 107, 1669 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Doll, G. Jeschke, Phys. Chem. Chem. Phys. 18, 33 (2016)CrossRefGoogle Scholar
  19. 19.
    P. Cekan, A.L. Smith, N. Barhate, B.H. Robinson, S.T. Sigurdsson, Nucl. Acids Res. 36, 5946 (2008)CrossRefGoogle Scholar
  20. 20.
    O. Schiemann, P. Cekan, D. Margraf, T.F. Prisner, S.T. Sigurdsson, Angew. Chemie Int. Ed. 48, 3292 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Marko, V. Denysenkov, D. Margraf, P. Cekan, O. Schiemann, S.T. Sigurdsson, T.F. Prisner, J. Am. Chem. Soc. 133, 13375 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Marko, S.T. Sigurdsson, T.F. Prisner, J. Magn. Reson. 252, 187 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    D. Margraf, B. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105, 15 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Marko, D. Margraf, H. Yu, Y. Mu, G. Stock, T.F. Prisner, J. Phys. Chem. 130, 6 (2009)CrossRefGoogle Scholar
  25. 25.
    L.S. Stelzl, N. Erlenbach, M. Heinz, T.F. Prisner, G. Hummer, J. Am. Chem. Soc. 30, 139 (2017)Google Scholar
  26. 26.
    M.S. Silver, R.I. Joseph, D.I. Hoult, Phys. Rev. A 31, 2753 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    Ē. Kupce, R. Freeman, J. Magn. Reson. A 117, 246 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    S.K. Misra, P.P. Borbat, J.H. Freed, Appl. Magn. Reson. 36, 237 (2008)CrossRefGoogle Scholar
  29. 29.
    P.E. Spindler, P. Schöps, A.M. Bowen, B. Endeward, T.F. Prisner, eMagRes. 5, 1477 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
  2. 2.Inorganic Chemistry Laboratory, Department of Chemistry, Centre for Applied Electron Spin ResonanceUniversity of OxfordOxfordUK
  3. 3.Department of Theoretical BiophysicsMax Planck Institute of BiophysicsFrankfurt am MainGermany
  4. 4.Department of Chemistry, Science InstituteUniversity of IcelandReykjavíkIceland

Personalised recommendations