Skip to main content
Log in

Pore Structure Evaluation of Bioclastic Limestone Using NMR and HPMI Measurements

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Pore structure evaluation is a crucial segment of revealing the reservoir characteristics and percolation mechanism. Considering the diversity of origins, types and combinations in reservoir space, the effective evaluation method of bioclastic limestone pore structure had not been built yet, which greatly restricted the comprehension of storage-permeability mechanism, as well as the subsequent development strategies. Therefore, this study systematically analyzed the corresponding relationship between the fractal characteristics of capillary pressure curves and pore connectivity. The T2 relaxation criterion of different pore diameter components were determined reasonably according to the features of nuclear magnetic resonance T2 spectrum. Combined with a fuzzy clustering algorithm, a new logging classification method was established using proportions of different pore components as sensitive parameters. The results showed that the capillary force curves of bioclastic limestone reservoir mainly exhibited two kinds of form: “convex” and “concave”. The former showed better storage-percolation characteristics; while the same characteristics of the latter were closely related to inflection points, degrading by the location of respective point from right to left; In addition, the relationship between the pore throat radius r and nuclear magnetic relaxation time T2 could be classified into four stages obviously. With the pore throat radius of 0.15, 1, 5 μm and T2 relaxation time 30, 90 and 200 ms, the pore structure of bioclastic limestone was effectively divided into four categories. On this basis, the calculation precision of permeability would be significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.Q. Mao, C.G. Zhang, C.Z. Lin, J. Ouyang, Q. Wang, C.J. Yan, in SPWLA 36th Annual Logging Symposium (Paris, France, 26–29 June, 1995), SPWLA-1995-LL

  2. K. Verwer, G.P. Eberli, R.J. Weger, AAPG Bull. 95, 175–190 (2011)

    Article  Google Scholar 

  3. E. Aliakbardoust, H. Rahimpour-Bonab, J. Petrol. Sci. Eng. 122, 296–309 (2013)

    Article  Google Scholar 

  4. C.L. Li, C.X. Li, Well Log Technol. 34, 233–237 (2010)

    ADS  Google Scholar 

  5. M. Kumar, R. Sok, M.A. Knackstedt, S. Latham, T.J. Senden, A.P. Sheppard, T. Varslot, Petrophysics. 51, 102–117 (2010)

    Google Scholar 

  6. Y. Nakashima, T. Kikuchi, Geophys. Prospect. 55, 235–254 (2007)

    Article  ADS  Google Scholar 

  7. S.N. Bassem, Y. Géraud, P. Rochette, N. Bur, AAPG Bull. 93, 719–739 (2009)

    Article  Google Scholar 

  8. M. Gao, X.R. An, S.H. Zhi, Z.Q. Li, Y. Peng, X. Gao, P.Z. Yu, Well Log Technol. 24, 188–193 (2000)

    Google Scholar 

  9. K. Li, J. Petrol. Sci. Eng. 73, 20–26 (2010)

    Article  Google Scholar 

  10. M. Schmitt, C.P. Fernandes, J.A.B.C. Neto, F.G. Wolf, V.S.S. Santos, Mar. Pet. Geol. 39, 138–149 (2013)

    Article  Google Scholar 

  11. Y. Wang, Y. Zhu, S. Chen, W. Li, Energy Fuels 28, 945–955 (2014)

    Article  Google Scholar 

  12. L.Z. Xiao, T.Y. Liu, R.S. Fu, Acta Pet. Sin. 25, 38–41 (2004)

    Google Scholar 

  13. L.Z. Xiao, The Technology and Application of Magnetic Resonance Imaging Logging and Rock NMR (Science Press, Beijing, 1998)

    Google Scholar 

  14. H. Gao, H. Li, J. Petrol. Sci. Eng. 133, 258–267 (2015)

    Article  Google Scholar 

  15. T.Y. Liu, S.M. Wang, R.S. Fu, M.S. Zhou, Y.H. Li, M. Luo, Oil Geophys. Prospect. 38, 328–333 (2003)

    Google Scholar 

  16. Z.H. Liu, C.C. Zhou, L.H. Zhang, D.J. Dai, C.L. Li, L. Zhang, G.Q. Liu, Y.J. Shi, in SPWLA 48th Annual Logging Symposium (Austin, Texas, 3–6 June, 2007), SPWLA-2007-S

  17. X.M. Ge, Y.R. Fan, L.M. Tang, Y.G. Chen, L.H. Qi, S. Xing, J. Central South Univ. (Sci. Technol.) 46, 2227–2235 (2015)

  18. X.M. Ge, Y.R. Fan, Y.C. Cao, Y.J. Xu, X. Liu, Y.G. Chen, Appl. Magn. Reson. 45, 155–167 (2014)

    Article  Google Scholar 

  19. F. Bai, Y. Sun, Y. Liu, M. Guo, Fuel 187, 1–8 (2017)

    Article  Google Scholar 

  20. Z. Cao, G.D. Liu, H.B. Zhan, C.Z. Li, Y. You, C.Y. Yang, H. Jiang, Sci. Rep. 36919, 1–13 (2016)

    Google Scholar 

  21. J. Lai, G. Wang, J. Nat. Gas Sci. Eng. 24, 185–196 (2015)

    Article  Google Scholar 

  22. F. Dell Acqua, P. Gamba, Trans. Geosci. Remote Sens. 39, 2287–2297 (2001)

  23. Y. Volokitin, W.J. Looyestijn, W.F.J. Slijkerman, J. P. Hofman, Petrophysics 42, 334–343 (2001)

    Google Scholar 

  24. Z.X. Xiao, L. Xiao, Atomic Energy Sci. Technol. 42, 868–871 (2008)

    Google Scholar 

  25. J. Hofman, W. Slijkermail, W. Looyestijn, Y. Volokitin, in SPWLA 40th Annual Logging Symposium (Oslo, Norway, 30 May-3 June, 1999), SPWLA-1999-KKK

  26. M. Eslami, A. Kadkhodaie-Ilkhchi, Y. Sharghi, N. Golsanami, J. Petrol. Sci. Eng. 111, 50–58 (2013)

    Article  Google Scholar 

  27. H.Y. Yun, W.J. Zhao, B.K. Liu, C.C. Zhou, F.M. Zhou, Well Log Technol. 26, 18–21 (2002)

    Google Scholar 

  28. L. Xiao, Z.Q. Mao, C.C. Zou, Y. Jin, J.C. Zhu, J. Petrol. Sci. Eng. 147, 154–167 (2016)

    Article  Google Scholar 

  29. J.L. Su, J.M. Sun, T. Wang, S.W. Zhang, J. Jilin Univ. (Earth Sci. Edition) 41, 380–386 (2011)

  30. Y.D. He, Z.Q. Mao, L.Z. Xiao, X.J. Ren, Chin. J. Geophys. 48, 373–378 (2005)

    Google Scholar 

  31. L. Xiao, Z.Q. Mao, Z.X. Xiao, C. Zhang, in SPWLA 49th Annual Logging Symposium (Austin, Texas, 25–28 May, 2008), SPWLA-2008-AA

  32. X.M. Wang, Y.R. Guo, J.H. Fu, Pet. Explor. Dev. 32, 35–38 (2005)

    Google Scholar 

  33. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977)

    Google Scholar 

  34. H. Gao, B. Yu, Y. Duan, Q. Fang, Int. J. Heat Mass Transf. 69, 26–33 (2014)

    Article  Google Scholar 

  35. A. Sakhaee-Pour, W. Li, J. Nat. Gas Sci. Eng. 30, 578–582 (2016)

    Article  Google Scholar 

  36. F. Yang, Z.F. Ning, H.Q. Liu, Fuel 115, 378–384 (2014)

    Article  Google Scholar 

  37. A.J. Katz, A.H. Thompson, Phy. Rev. Lett. 54, 1325–1328 (1985)

    Article  ADS  Google Scholar 

  38. F. Jiang, D. Chen, J. Chen, Q. Li, Y. Liu, X. Shao, T. Hu, J. Dai, Energy Fuels 30, 4676–4689 (2016)

    Article  Google Scholar 

  39. K.J. Dunn, D.J. Bergman, G.A. Latorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Application (Elsevier, New York, 2002), pp. 94–95

    Google Scholar 

  40. F. Xu, S.T. Bai, J.B. Zhao, Z.W. Si, Z.D. Zhuang, J. Oil Gas Technol. 35, 76–80 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Foundation for Exploring Scientific Instrument of China (2013YQ170463-06), Natural Science Foundation of China (41674131) and Fundamental Research Funds for the Central Universities (16CX06048A and 16CX05004A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiao Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Fan, Y., Xu, H. et al. Pore Structure Evaluation of Bioclastic Limestone Using NMR and HPMI Measurements. Appl Magn Reson 50, 29–45 (2019). https://doi.org/10.1007/s00723-018-1038-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1038-6

Navigation