Applied Magnetic Resonance

, Volume 49, Issue 10, pp 1119–1127 | Cite as

Non-invasive Measurements of Oilseed Temperature in Soil and Soil Thermal Diffusivity Using Time-Domain NMR Relaxometry

  • Maria G. A. Carosio
  • Diego F. Bernardes
  • André de S. Carvalho
  • Luiz A. Colnago
Original Paper


Global warming is threatening food production in tropical areas, because the increase of soil temperature may limit seed germination and plant growth. Soil temperature and thermal diffusivity (λ) have been measured using the conventional thermometry. In this study, we are demonstrating that time-domain nuclear magnetic resonance (TD-NMR) relaxometry can be a non-invasive method to determine oilseed temperature in soils and soil thermal diffusivity (λ). The correlation between oilseed transverse relaxation times (T2) and seed temperature has been used to measure the temperatures of intact oilseed in soil samples. To calculate soil thermal diffusivity, spherical soil samples with 7 cm in diameter containing a macadamia nut in the center were heated to 70 °C and then placed in an air bath at room temperature. λ values were calculated using the time constant of oilseed temperature decay, measured by TD-NMR and sample dimensions. The λ values of dry entisol, yellow oxisol, and red oxisol soils were 1.89 × 10−7, 1.52 × 10−7, and 1.03 × 10−7 m2 s−1, respectively. These values were within the same order of magnitude range observed for the values measured by both thermocouple and Dickerson methods. The λ values of dry and moist typic hapludox were 1.16 × 10−7 and 2.29 × 10−7 m2 s−1, respectively. Therefore, TD-NMR is shown to be a feasible method to measure seed temperature in soils and soil thermal diffusivity, and is a potential non-invasive tool to investigate the effect of temperature on seed germination and seedling.



We thank the following Brazilian funding agencies for their financial support: FAPESP (Grants # 2009/09734-1, 2011/14099-3, and 2014/22126-9) and CNPq (Grants # 403075/2013-0 and 303837/2013-6). We would also like to thank Dr. Carlos Manoel Pedro Vaz for kindly donating the soil samples.


  1. 1.
    J. van Duynhoven, A. Voda, M. Witek, H. Van As, Annu. Rep. NMR Spectrosc. 69, 145 (2010)CrossRefGoogle Scholar
  2. 2.
    I. Morrison, J. Sci. Food Agric. 84, 25 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Kirtil, S. Cikrikci, M.J. McCarthy, M.H. Oztop, Curr. Opin. Food Sci. 17, 9 (2017)CrossRefGoogle Scholar
  4. 4.
    C.C. Corrêa, L.A. Forato, L.A. Colnago, Anal. Bioanal. Chem. 393, 1357 (2009)CrossRefGoogle Scholar
  5. 5.
    R.B.V. Azeredo, L.A. Colnago, A.A. Souza, M. Engelsberg, Anal. Chim. Acta 478, 313 (2003)CrossRefGoogle Scholar
  6. 6.
    P.M. Santos, E.R. Pereira-Filho, L.A. Colnago, Microchem. J. 124, 15 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Metzner, D. van Dusschoten, J. Bühler, U. Schurr, S. Jahnke, Front Plant Sci. 5, 1 (2014)CrossRefGoogle Scholar
  8. 8.
    C.W. Windt, H. Soltner, D. Van Dusschoten, P. Blümler, J. Magn. Reson. 208, 27 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    D. van Dusschoten, R. Metzner, J. Kochs, J.A. Postma, D. Pflugfelder, J. Buehler, U. Schurr, S. Jahnke, Plant Physiol. 170, 1176 (2016)Google Scholar
  10. 10.
    L.A. Colnago, P.R. Seidl, J. Agric. Food Chem. 31, 459 (1983)CrossRefGoogle Scholar
  11. 11.
    P.F. Cobra, B.F. Gomes, C.I.N. Mitre, L.L. Barbosa, L.V. Marconcini, L.A. Colnago, Microchem. J. 121, 14 (2015)CrossRefGoogle Scholar
  12. 12.
    L.F. Cabeça, L.V. Marconcini, G.P. Mambrini, R.B.V. Azeredo, L.A. Colnago, Energy Fuels 25, 2696 (2011)CrossRefGoogle Scholar
  13. 13.
    L.A. Colnago, F.D. Andrade, A.A. Souza, R.B.V. Azeredo, A.A. Lima, L.M. Cerioni, T.M. Osán, D.J. Pusiol, Chem. Eng. Technol. 37, 191 (2014)CrossRefGoogle Scholar
  14. 14.
    R.A. Prestes, L.A. Colnago, L.A. Forato, L. Vizzotto, E.H. Novotny, E. Carrilho, Anal. Chim. Acta 596, 325 (2007)CrossRefGoogle Scholar
  15. 15.
    M.G.A. Carosio, D.F. Bernardes, F.D. Andrade, T.B. Moraes, G. Tosin, L.A. Colnago, J. Food Eng. 173, 143 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Noureddini, B.C. Teoh, L. Davis, Clements. J. Am. Oil Chem. Soc. 69, 1189 (1992)CrossRefGoogle Scholar
  17. 17.
    R.A. Kerr, Science 307, 828 (2005)CrossRefGoogle Scholar
  18. 18.
    K.L. Bristow, G.J. Kluitenberg, R. Horton, Soil. Sci. Soc. Am. J. 58, 1288 (1994)CrossRefGoogle Scholar
  19. 19.
    S.R. Evett, N. Agam, W.P. Kustas, P.D. Colaizzi, R.C. Schwartz, Adv. Water Resour. 50, 41 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    R. Horton, P.J. Wierenga, D.R. Nielsen, Soil Sci. Soc. Am. J. 47, 25 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Viswanadham, R. Ramanadham, Pure Appl. Geophys. PAGEOPH 74, 195 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    P.A.P. Borges, C. Fengler, A. Cervi, Rev. Bras. Eng. Agrícola e Ambient. 13, 591 (2009)CrossRefGoogle Scholar
  23. 23.
    C.M.P. Vaz, J.C.M. Oliveira, K. Reichardt, S. Crestana, P.E. Cruvinel, O.O.S. Bacchi, Soil Technol. 5, 319 (1992)Google Scholar
  24. 24.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, Oxford, 1959)zbMATHGoogle Scholar
  25. 25.
    T. Venâncio, M. Engelsberg, R.B.V. Azeredo, L.A. Colnago, J. Magn. Reson. 181, 29 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    R.W. Dickerson, Food Technol. 19, 880–886 (1959)Google Scholar
  27. 27.
    O. Sucre, A. Pohlmeier, A. Minière, B. Blümich, J. hydrol. 406, 30 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    N.H. Abu-Hamdeh, Biosyst. Eng. 86, 97 (2003)CrossRefGoogle Scholar
  29. 29.
    M.H.M. Killner, G. Tosin, A.S. Carvalho, D. Firme Bernardes, L.A. Colnago, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.EMBRAPA InstrumentaçãoSão CarlosBrazil
  3. 3.Fine Instrument TechnologySão CarlosBrazil

Personalised recommendations