Advertisement

Solvation and Rotational Diffusion of Solutes in Room Temperature Ionic Liquids as Studied by EPR Spectroscopy with Nitroxide Spin Probing Method

Original Paper

Abstract

In this article, we briefly introduced our studies on solvation and rotational diffusion of solutes in room temperature ionic liquids (RTILs) by electron paramagnetic resonance with nitroxide spin probing method. Most of the rotational correlation times for the nitroxide radicals are within the range calculated on the basis of Stokes–Einstein–Debye hydrodynamic theory with stick and slip boundary conditions or Gierer–Wirtz theory except for smaller solutes in some RTILs with smaller BF4 and PF6 anions. In RTILs with 1-butyl-3-methylimidazolium as cation and BF4 or PF6 as anion, nitroxide radicals undergo rotational diffusion like supercooled liquids and nitroxide radical with smaller volume rotationally slips.

Notes

Acknowledgements

The authors express their thanks to Professor emeritus Dr. Kazuhiko Shibuya (Tokyo Institute of Technology) and Prof. Dr. Nobuyuki Akai (Tokyo University of Agriculture and Technology) for their invaluable guidance.

References

  1. 1.
    J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun. (1992).  https://doi.org/10.1039/C39920000965
  2. 2.
    J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Chem. Commun. (1998).  https://doi.org/10.1039/A803999B
  3. 3.
    T. Welton, Chem. Rev. 99, 2071 (1999)CrossRefGoogle Scholar
  4. 4.
    T. Kitazume, K. Kasai, Green Chem. 3, 30 (2001)CrossRefGoogle Scholar
  5. 5.
    K.S. Mali, G.B. Dutt, T. Mukherjee, J. Chem. Phys. 123, 174504 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    H. Jin, G. Baker, S. Arzhantsev, J. Dong, M. Maroncelli, J. Phys. Chem. B 111, 7291 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Iwata, M. Kakita, H. Hamaguchi, J. Phys. Chem. B 111, 4914 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Paul, A. Samanta, J. Phys. Chem. B 111, 4724 (2007)CrossRefGoogle Scholar
  9. 9.
    D. Seth, S. Sarkar, N. Sarkar, J. Phys. Chem. B 112, 2629 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Fruchey, M.D. Fayer, J. Phys. Chem. B 114, 2840 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Shim, D. Jeong, M.Y. Choi, H.J. Kim, J. Chem. Phys. 125, 061102 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Funston, T.A. Fadeeva, J.F. Wishart, E.W. Castner Jr., J. Phys. Chem. B 111, 4963 (2007)CrossRefGoogle Scholar
  13. 13.
    M.A.M. Noël, R.D. Allendoerfer, R.A. Osteryoung, J. Phys. Chem. 96, 2391 (1992)CrossRefGoogle Scholar
  14. 14.
    A. Kawai, T. Hidemori, K. Shibuya, Chem. Lett. 33, 1464 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Miyake, N. Akai, A. Kawai, K. Shibuya, J. Phys. Chem. A 115, 6347 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Merunka, M. Peric, M. Peric, J. Phys. Chem. B 119, 3185 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Strehmel, A. Laschewsky, R. Stoesser, A. Zehl, W. Herrmann, J. Phys. Org. Chem. 19, 318 (2006)CrossRefGoogle Scholar
  18. 18.
    B.Y. Mladenova, D.R. Katting, G. Grampp, J. Phys. Chem. B 115, 8183 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Akdogan, J. Heller, H. Zimmermann, D. Hinderberger, Phys. Chem. Chem. Phys. 12, 7874 (2010)CrossRefGoogle Scholar
  20. 20.
    R.G. Evans, A.J. Wain, C. Hardacre, R.G. Compton, Chem. Phys. Chem. 6, 1035 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Miyake, N. Akai, K. Shibuya, A. Kawai, Chem. Lett. 42, 1429 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Miyake, T. Hidemori, N. Akai, A. Kawai, K. Shibuya, Chem. Lett. 38, 124 (2009)CrossRefGoogle Scholar
  23. 23.
    L.J. Berliner, Spin Labeling: Theory and Applications, vol. 1 (Academic Press, New York, 1976)Google Scholar
  24. 24.
    B.R. Knauer, J.J. Napier, J. Am. Chem. Soc. 98, 4395 (1976)CrossRefGoogle Scholar
  25. 25.
    L.R. Dalton, EPR and Advanced EPR Studies of Biological Systems, vol. 2 (CRC Press, Boca Raton, 1984)Google Scholar
  26. 26.
    S.A. Goldman, G.V. Bruno, C.F. Polnaszek, J.H. Freed, J. Chem. Phys. 56, 716 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    M. Roy, S. Doraiswamy, Chem. Phys. 98, 3213 (1993)ADSGoogle Scholar
  28. 28.
    C.M. Hu, R. Zwanzig, J. Chem. Phys. 60, 4354 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    A. Gierer, K. Wirtz, Z. Naturforsch, A Phys. Sci. 8, 532 (1953)Google Scholar
  30. 30.
    J.L. Dote, D. Kivelson, R.N. Schwartz, J. Phys. Chem. 85, 2169 (1981)CrossRefGoogle Scholar
  31. 31.
    C. Reichardt, Chem. Rev. 94, 2319 (1994)CrossRefGoogle Scholar
  32. 32.
    J.N.A.C. Lopes, A.A.H. Padua, J. Phys. Chem. B 110, 3330 (2006)CrossRefGoogle Scholar
  33. 33.
    L. Andreozzi, A.D. Schino, M. Giordano, D. Leporini, Europhys. Lett. 38, 669 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    L. Andreozzi, M. Bagnoli, M. Faetti, M. Giordano, J. Non-Cryst. Solids 303, 262 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    M. Makino, R. Kishikawa, M. Mizoshiri, S. Takeda, M. Yao, J. Chem. Phys. 129, 104510 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Green Chem. 5, 361 (2003)CrossRefGoogle Scholar
  37. 37.
    A. Kaintz, G. Baker, A. Benesi, M. Maroncelli, J. Phys. Chem. B 117, 11697 (2013)CrossRefGoogle Scholar
  38. 38.
    J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, J. Phys. Chem. B 119, 7015 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Molecular Chemistry and EngineeringKyoto Institute of TechnologyKyotoJapan
  2. 2.Department of Chemistry, Faculty of SciencesKanagawa UniversityHiratsukaJapan

Personalised recommendations