Applied Magnetic Resonance

, Volume 49, Issue 7, pp 687–705 | Cite as

Flowing Liquids in NMR: Numerical CFD Simulation and Experimental Confirmation of Magnetization Buildup

  • Michael Kespe
  • Eva Förster
  • Hermann Nirschl
  • Gisela Guthausen
Original Paper


Process and reaction monitoring by nuclear magnetic resonance (NMR) spectroscopy has attracted considerable attention in the last years not only because of the new generation of low-field NMR spectrometers, but also because of an industrial need of more effectivity and process optimization via real-time monitoring of process and reaction details by diverse analytical tools. Most often, bypass solutions are realized in liquid state monitoring, which leads to questions of residence time distribution, mixing phenomena and accuracy of concentration determination. Exploring chemical engineering knowledge of fluid dynamics and combining it with NMR knowledge of magnetization buildup allow the calculation of magnetization in NMR measurements on flowing substances. This approach reveals the essential parameters to be considered when constructing flow cells and when processing data in NMR process monitoring. 3D computational fluid dynamics combined with Bloch equations allows detailed time and spatially resolved insights into the significant mechanisms of magnetization distribution and opens up new possibilities for experiment design in flow NMR. An experimental confirmation was provided by MRI experiments.



The authors thank the German Research Foundation (DFG) for financial support of the instrumental facility Pro2NMR.


  1. 1.
    J.F. Haw, T.E. Glass, H.C. Dorn, Anal. Chem. 53, 2327–2332 (1981)CrossRefGoogle Scholar
  2. 2.
    J.F. Haw, T.E. Glass, H.C. Dorn, J. Magn. Reson. 49, 22–31 (1982)ADSGoogle Scholar
  3. 3.
    H.C. Dorn, Anal. Chem. 56, A747–A758 (1984)Google Scholar
  4. 4.
    H.C. Dorn, in Encyclopedia of Nuclear Magnetic Resonance, ed. by D.M. Grant, R.K. Harris (Wiley, Chichester, 1996), pp. 2026–2037Google Scholar
  5. 5.
    T.M. Osan, J.M. Olle, M. Carpinella, L.M.C. Cerioni, D.J. Pusiol, M. Appel, J. Freeman, I. Espejo, J. Magn. Reson. 209, 116–122 (2011)CrossRefADSGoogle Scholar
  6. 6.
    G.K. Radda, P. Styles, K.R. Thulborn, J.C. Waterton, J. Magn. Reson. 42, 488–490 (1981)ADSGoogle Scholar
  7. 7.
    A. Caprihan, E. Fukushima, Phys. Rep. 198, 195–235 (1990)CrossRefADSGoogle Scholar
  8. 8.
    E. Bayer, K. Albert, M. Nieder, E. Grom, J. Chromatogr. 186, 497–507 (1979)CrossRefGoogle Scholar
  9. 9.
    K. Albert, E. Bayer, Trends Anal. Chem. 7, 288–293 (1988)CrossRefGoogle Scholar
  10. 10.
    K. Albert, J. Chromatogr. A 703, 123–147 (1995)CrossRefGoogle Scholar
  11. 11.
    M. Maiwald, H.H. Fischer, Y.K. Kim, K. Albert, H. Hasse, J. Magn. Reson. 166, 135–146 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M. Maiwald, H.H. Fischer, Y.K. Kim, H. Hasse, Anal. Bioanal. Chem. 375, 1111–1115 (2003)CrossRefGoogle Scholar
  13. 13.
    M. Maiwald, T. Grutzner, E. Strofer, H. Hasse, Anal. Bioanal. Chem. 385, 910–917 (2006)CrossRefGoogle Scholar
  14. 14.
    F. Dalitz, M. Cudaj, M. Maiwald, G. Guthausen, Prog. Nucl. Magn. Reson. Spectrosc. 60, 52–70 (2012)CrossRefGoogle Scholar
  15. 15.
    E. Danieli, J. Perlo, A.L.L. Duchateau, G.K.M. Verzijl, V.M. Litvinov, B. Blümich, F. Casanova, Chem. Phys. Chem. 15, 3060–3066 (2014)CrossRefGoogle Scholar
  16. 16.
    S.K. Küster, F. Casanova, E. Danieli, B. Blümich, Phys. Chem. Chem. Phys. 13, 13172–13176 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Nordon, C.A. McGill, D. Littlejohn, Analyst 126, 260–272 (2001)CrossRefADSGoogle Scholar
  18. 18.
    M.A. Vargas, M. Cudaj, K. Hailu, K. Sachsenheimer, G. Guthausen, Macromolecules 43, 5561–5568 (2010)CrossRefADSGoogle Scholar
  19. 19.
    G. Guthausen, A. von Garnier, R. Reimert, Appl. Spectrosc. 63, 1121–1127 (2009)CrossRefADSGoogle Scholar
  20. 20.
    H. Herold, E.H. Hardy, M. Ranft, K.H. Wassmer, N. Nestle, Microporous Mesoporous Mater. 178, 74–78 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Herold, E.H. Hardy, K.H. Wassmer, N. Nestle, Chem. Ing. Tech. 84, 93–99 (2012)CrossRefGoogle Scholar
  22. 22.
    O. Levenspiel, Chemical Reaction Engineering, 3rd edn. (Wiley, New York, 1999)Google Scholar
  23. 23.
    H.S. Fogler, Essentials of Chemical Reaction Engineering (Pearson Education, London, 2010)Google Scholar
  24. 24.
    K. Jurczuk, M. Kretowski, J.J. Bellanger, P.A. Eliat, H. Saint-Jalmes, J. Bezy-Wendling, Magn. Reson. Imaging 31, 1163–1173 (2013)CrossRefGoogle Scholar
  25. 25.
    R.L. Haner, Flow Tube for NMR Probe, Patent Application Number 628,228, Patent Number US 5867026 (Varian Associates Inc., 1999)Google Scholar
  26. 26.
    R.L. Haner, W. Llanos, L. Mueller, J. Magn. Reson. 143, 69–78 (2000)CrossRefADSGoogle Scholar
  27. 27.
    R.L. Haner, J.Y. Lee, Flow-Through NMR Having a Replacable NMR Flow Tube, US Patent Number US 6177798 B1 (Varian Associates Inc., 2001)Google Scholar
  28. 28.
    W. Hiller, M. Hehn, T. Hofe, K. Oleschko, Anal. Chem. 82, 8244–8250 (2010)CrossRefGoogle Scholar
  29. 29.
    F. Dalitz, M. Maiwald, G. Guthausen, Chem. Eng. Sci. 75, 318–326 (2012)CrossRefGoogle Scholar
  30. 30.
    F. Dalitz, L. Kreckel, M. Maiwald, G. Guthausen, Appl. Magn. Reson. 45, 411–425 (2014)CrossRefGoogle Scholar
  31. 31.
    H.C. Torrey, Phys. Rev. 104, 563–565 (1956)CrossRefADSGoogle Scholar
  32. 32.
    F. Bloch, Phys. Rev. 70, 460 (1946)CrossRefADSGoogle Scholar
  33. 33.
    E.O. Stejskal, J. Chem. Phys. 43, 3597–3603 (1965)CrossRefADSGoogle Scholar
  34. 34.
    V. Chanteloup, P.S. Mirade, J. Food Eng. 90, 90–103 (2009)CrossRefGoogle Scholar
  35. 35.
    J.R. Waters, M.W. Simons, Build. Serv. Eng. Res. Technol. 23, 19–29 (2002)CrossRefGoogle Scholar
  36. 36.
    A.I. Zhernovoi, G.D. Latyshev, Nuclear Magnetic Resonance in a Flowing Liquid (Consultants Bureau, New York, 1965)Google Scholar
  37. 37.
    A. Nordon, A. Diez-Lazaro, C.W.L. Wong, C.A. McGill, D. Littlejohn, M. Weerasinghe, D.A. Mamman, M.L. Hitchman, J. Wilkie, Analyst 133, 339–347 (2008)CrossRefADSGoogle Scholar
  38. 38.
    M. Cudaj, G. Guthausen, T. Hofe, M. Wilhelm, Macromol. Chem. Phys. 213, 1933–1943 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Cudaj, G. Guthausen, T. Hofe, M. Wilhelm, Macromol. Rapid Commun. 32, 665–670 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Engler-Bunte Institute, Chair for Water Chemistry and TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations