Skip to main content
Log in

Fractal Approach for 1H-NMR Spectra Simplification and Data Processing

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) is a powerful instrumental technique suited to characterize and identify organic substances, and has been successfully applied in the analysis of complex matrices such as biological and environmental samples. In a previous work, we demonstrated the ability of unsupervised contribution analysis (UCA) to process complex mixtures to identify the number of independent constituents and deconvolute mixed signals into specific signal sources. In this work, we evaluated the deconvolving ability of this algorithm to access underlying spectral information—we used UCA to estimate the number of contributing species and respective contributing sources and scores and with that information performed selective 1H-NMR signal suppression. We found that, in optimal NMR conditions, independently of signal source type, UCA allows us to correctly (a) estimate the number of independent contributions, (b) retrieve specific signal sources and (c) respective mixing information, allowing us to (d) characterize each contribution using signal sources and (e) quantify each specific contribution by means of its mixing information. This unsupervised soft-modeling method allows (f) individual contribution estimation and (g) respective removal from collected spectra, thus (h) enhancing spectra information for minor contributing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Kostidis, D. Kokova, N. Dementeva, I.V. Saltykova, H.K. Kim, Y.H. Choi, O.A. Mayboroda, BMC Infect. Dis. 17(1), 275 (2017). https://doi.org/10.1186/s12879-017-2351-7

    Article  Google Scholar 

  2. M. Perez-Trujillo, J.C. Lindon, T. Parella, H.C. Keun, J.K. Nicholson, T.J. Athersuch, Anal. Chem. 84(6), 2868 (2012). https://doi.org/10.1021/ac203291d

    Article  Google Scholar 

  3. A.D. Maher, S.F.M. Zirah, E. Holmes, J.K. Nicholson, Anal. Chem. 79(14), 5204 (2007). https://doi.org/10.1021/ac070212f

    Article  Google Scholar 

  4. E. Holmes, A.W. Nicholls, J.C. Lindon, S.C. Connor, J.C. Connelly, J.N. Haselden, S.J.P. Damment, M. Spraul, P. Neidig, J.K. Nicholson, Chem. Res. Toxicol. 13(6), 471 (2000). https://doi.org/10.1021/tx990210t

    Article  Google Scholar 

  5. M. Liu, J.K. Nicholson, J.C. Lindon, Anal. Chem. 68(19), 3370 (1996). https://doi.org/10.1021/ac960426p

    Article  Google Scholar 

  6. D.J. Crockford, H.C. Keun, L.M. Smith, E. Holmes, J.K. Nicholson, Anal. Chem. 77(14), 4556 (2005). https://doi.org/10.1021/ac0503456

    Article  Google Scholar 

  7. O. Cloarec, M.E. Dumas, J. Trygg, A. Craig, R.H. Barton, J.C. Lindon, J.K. Nicholson, E. Holmes, Anal. Chem. 77(2), 517 (2005). https://doi.org/10.1021/ac048803i

    Article  Google Scholar 

  8. C. Xiao, F. Hao, X. Qin, Y. Wang, H. Tang, Analyst 134, 916 (2009). https://doi.org/10.1021/10.1039/B818802E

    Article  ADS  Google Scholar 

  9. H.M. Parsons, C. Ludwig, M.R. Viant, Magn. Reson. Chem. 47(S1), S86 (2009). https://doi.org/10.1021/10.1002/mrc.2501

    Article  Google Scholar 

  10. K.A. Veselkov, J.C. Lindon, T.M.D. Ebbels, D. Crockford, V.V. Volynkin, E. Holmes, D.B. Davies, J.K. Nicholson, Anal. Chem. 81(1), 56 (2009). https://doi.org/10.1021/10.1021/ac8011544

    Article  Google Scholar 

  11. M. Liebeke, J. Hao, T.M.D. Ebbels, J.G. Bundy, Anal. Chem. 85(9), 4605 (2013). https://doi.org/10.1021/10.1021/ac400237w

    Article  Google Scholar 

  12. J.C. Pereira, I. Jarak, R.A. Carvalho, Magn. Reson. Chem. 55(10), 936 (2017). https://doi.org/10.1021/10.1002/mrc.4606

    Article  Google Scholar 

  13. J.C. Pereira, J.C.R. Azevedo, H.G. Knapik, H.D. Burrows, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 165, 69 (2016). https://doi.org/10.1021/10.1016/j.saa.2016.03.048

    Article  ADS  Google Scholar 

  14. J.V. Li, J. Saric, Y. Wang, J. Keiser, J. Utzinger, E. Holmes, Parasites Vectors 4(1), 179 (2011). https://doi.org/10.1186/1756-3305-4-179

    Article  Google Scholar 

  15. J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, A High-Level Interactive Language for Numerical Computations, 4th edn. (Free Software Foundation Inc., Boston, 2017)

    Google Scholar 

  16. J. Marchini, C. Heaton, B. Ripley, Package fastICA: algorithms to perform ICA and projection pursuit. http://cran.r-project.org/web/packages/fastICA/index.html. Accessed Feb 2018

  17. X. Yu, D. Hu, J. Xu, Blind Source Separation: Theory and Applications, 1st edn. (Wiley, Beijing, 2014)

    Book  Google Scholar 

Download references

Acknowledgements

The Coimbra Chemistry Centre (CQC) is supported by FCT, through the project UI0313/QUI/2013, also co-funded by FEDER/COMPETE 2020-UE. We acknowledge the “Rede Nacional de RMN” (REDE/1517/RMN/2005) facility, also funded by Fundo Europeu de Desenvolvimento Regional (FEDER) Funds through the Operational Competitiveness Program COMPETE and by National Funds through FCT under the project FCOMP 010124FEDER020970 (PTDC/QUIBIQ/120319/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Costa Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa Pereira, J., Jarak, I. & Carvalho, R.A. Fractal Approach for 1H-NMR Spectra Simplification and Data Processing. Appl Magn Reson 49, 975–998 (2018). https://doi.org/10.1007/s00723-018-1010-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1010-5

Navigation