Applied Magnetic Resonance

, Volume 49, Issue 7, pp 665–678 | Cite as

Peculiarity of the Nuclear Magnetic Resonance Method Application for the Liquid Medium Flow Parameters Control

  • V. V. Davydov
  • V. I. Dudkin
  • M. G. Vysoczkiy
  • N. S. Myazin
  • V. Yu. Rud’
Original Paper


The new peculiarities that arise when using nuclear magnetic resonance (NMR) method for liquid medium stream control are identified and investigated. Signal/noise ratio can be increased fivefold when these peculiarities are taken into account in design of NMR spectrometers. It made it possible first time ever to register NMR absorption spectra from different flowing media and to determine relative concentrations of paramagnetic ions by using these spectra. The increase of signal/noise ratio also allowed measuring longitudinal T1 and transverse T2 relaxation times in flowing media with error rate that does not exceed 0.5%, while in previous NMR spectrometer designs T1 and T2 measurement error rates were greater than 1.0%. The simultaneous use of the absorption spectra and the measured values of the relaxation constants T1 and T2 allows eliminating errors completely when determining flowing medium condition. This is especially important when working with medical suspensions and biological solutions. The results of the experimental investigations of liquid media flows are presented below.


  1. 1.
    V.V. Davydov, V.I. Dudkin, A.Yu. Karseev, Meas. Tech. 58, 317–322 (2015)CrossRefGoogle Scholar
  2. 2.
    V.V. Davydov, V.I. Dudkin, A.Yu. Karseev, Tech. Phys. Lett. 41, 355–358 (2015)CrossRefADSGoogle Scholar
  3. 3.
    N.N. Rozanov, Opt. Spectrosc. 113, 556–559 (2012)CrossRefADSGoogle Scholar
  4. 4.
    K. Hanjalić, B. Launder, Modelling Turbulence in Engineering and the Environment (Cambridge University Press, Cambridge, 2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    I.D. Velt, Yu.V. Mikhailova, Meas. Tech. 56, 283–286 (2013)CrossRefGoogle Scholar
  6. 6.
    M.P. Boronenko, A.M. Orlov, I.O. Yavtushenko, O.G. Rynkova, D.S. Bodnarskii, A.A. Solov’ev, Tech. Phys. Lett. 41, 221–224 (2015)CrossRefADSGoogle Scholar
  7. 7.
    M. Popovac, K. Hanjalic, Flow Turbul. Combus. 78, 177–186 (2007)CrossRefGoogle Scholar
  8. 8.
    J.R. Singer, J. Appl. Phys. 31, 125 (1960)CrossRefADSGoogle Scholar
  9. 9.
    R.S. Kashaev, N.R. Faskhiev, Chem. Technol. Fuels Oils 47, 362–373 (2011)CrossRefGoogle Scholar
  10. 10.
    V.V. Davydov, V.I. Dudkin, A.Yu. Karseev, Opt. Mem. Neural Netw. (Inf. Opt.) 23, 259–264 (2014)CrossRefGoogle Scholar
  11. 11.
    V.V. Davydov, V.I. Dudkin, A.Yu. Karseev, Russ. Phys. J. 58, 146–152 (2015)CrossRefGoogle Scholar
  12. 12.
    P.M. Agruzov, I.V. Pleshakov, E.E. Bibik, S.I. Stepanov, A.V. Shamrai, Europhys. Lett. 111, 57003–57005 (2015)CrossRefADSGoogle Scholar
  13. 13.
    V.A. Ryzhov, I.V. Pleshakov, A.A. Nechitailov, N.V. Glebova, E.N. Pyatyshev, Appl. Magn. Reson. 45, 339–352 (2014)CrossRefGoogle Scholar
  14. 14.
    V.V. Davydov, V.I. Dudkin, A.I. Eleseev, Tech. Phys. Lett. 41, 469–472 (2015)CrossRefADSGoogle Scholar
  15. 15.
    A. Lösche, Kerninduktion (Deutscher Verlag der Wissenschaften, Berlin, 1957)Google Scholar
  16. 16.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 646Google Scholar
  17. 17.
    W. Happer, Y.-Y. Jau, T. Walker, Optically Pumped Atoms (Wiley, Weinheim, 2010), p. 234CrossRefGoogle Scholar
  18. 18.
    T.G. Walker, M.S. Larsen, Adv. At. Mol. Opt. Phys. 65, 373–381 (2016)CrossRefADSGoogle Scholar
  19. 19.
    V.V. Davydov, E.N. Velichko, V.I. Dudkin, A.Yu. Karseev, Instrum. Exp. Tech. 58, 234–238 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Peter the Great Saint Petersburg Polytechnical UniversitySaint PetersburgRussia
  2. 2.The Bonch-Bruevich Saint Petersburg State University of TelecommunicationsSaint PetersburgRussia
  3. 3.All Russian Research Institute of PhytopathologyMoscow Region, B.VyazyomyRussia

Personalised recommendations