Applied Magnetic Resonance

, Volume 49, Issue 4, pp 415–427 | Cite as

Secondary-Phase Formation in Spinel-Type LiMn2O4-Cathode Materials for Lithium-Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy

  • Ruoheng SunEmail author
  • Peter Jakes
  • Svitlana Eurich
  • Désirée van Holt
  • Shuo Yang
  • Melanie Homberger
  • Ulrich Simon
  • Hans Kungl
  • Rüdiger-A. Eichel
Original Paper


Spinel-type lithium manganese oxides are considered as promising cathode materials for lithium-ion batteries. Trace amounts of Li2MnO3 usually occur as a secondary phase in lithium-manganese spinels in the common high-temperature, solid-state synthesis, affecting the overall Li–Mn stoichiometry in the spinel phase and thereby the electrochemical performance. However, the formation of Li2MnO3 lower than 1 wt.% can hardly be quantified by the conventional analytical techniques. In this work, we synthesized lithium-manganese spinels with different Li/Mn molar ratios and demonstrate that electron paramagnetic resonance (EPR) enables quantifying trace amounts of Li2MnO3 below 10−2 wt.% in the synthesized products. The results reveal that the formation of Li2MnO3 secondary phase is favored by lithium excess in the synthesis. Based on the quantitative evaluation of the EPR data, precise determining Li–Mn stoichiometry in the spinel phase in Li1+xMn2−xO4 materials can be assessed. Accordingly, it is possible to estimate the amount of lithium on 16d-sites in the Li-rich manganese spinels.



We gratefully acknowledge funding from the German Federal Ministry of Education and Research (BMBF-project DESIREE, Grant no. 03SF0477A). S.Y. and U.S. furthermore acknowledge financial support by the research training group “MobilEM” funded by the German Research Foundation. In addition, we thank Prof. Josef Granwehr for the vivid discussion about this research project.


  1. 1.
    G.E. Blomgren, J. Electrochem. Soc. 164, A5019 (2017)CrossRefGoogle Scholar
  2. 2.
    M.S. Whittingham, Chem. Rev. 104, 4271 (2004)CrossRefGoogle Scholar
  3. 3.
    M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 18, 461 (1983)CrossRefGoogle Scholar
  4. 4.
    M.M. Doeff, in Encyclopedia of Sustainability Science and Technology, (Springer, New York, 2012), pp. 708–739Google Scholar
  5. 5.
    B.L. Ellis, K.T. Lee, L.F. Nazar, Chem. Mater. 22, 691 (2010)CrossRefGoogle Scholar
  6. 6.
    M.M. Thackeray, Prog. Solid State Chem. 25, 1 (1997)CrossRefGoogle Scholar
  7. 7.
    R. Gummow, A. De Kock, M. Thackeray, Solid State Ionics 69, 59 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Bianchini, E. Suard, L. Croguennec, C. Masquelier, J. Phys. Chem. C 118, 25947 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Amatucci, J.-M. Tarascon, J. Electrochem. Soc. 149, K31 (2002)CrossRefGoogle Scholar
  10. 10.
    C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, J.B. Goodenough, J. Solid State Chem. 266, 255 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    D.Y.W. Yu, K. Yanagida, Y. Kato, H. Nakamura, J. Electrochem. Soc. 156, A417 (2009)CrossRefGoogle Scholar
  12. 12.
    V. Massarotti, J. Solid State Chem. 128, 80 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    G. Jain, J. Yang, M. Balasubramanian, J.J. Xu, Chem. Mater. 17, 3850 (2005)CrossRefGoogle Scholar
  14. 14.
    C.S. Johnson, N. Li, J.T. Vaughey, S.A. Hackney, M.M. Thackeray, Electrochem. Commun. 7, 528 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Ivanova, E. Zhecheva, D. Nihtianova, M. Mladenov, R. Stoyanova, J. Alloys Compd. 561, 252 (2013)CrossRefGoogle Scholar
  16. 16.
    S.F. Amalraj, D. Sharon, M. Talianker, C.M. Julien, L. Burlaka, R. Lavi, E. Zhecheva, B. Markovsky, E. Zinigrad, D. Kovacheva, R. Stoyanova, D. Aurbach, Electrochim. Acta 97, 259 (2013)CrossRefGoogle Scholar
  17. 17.
    E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, C. Fasel, R. Riedel, R.-A. Eichel, Phys. Chem. Chem. Phys. 11, 5628 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Jakes, E. Erdem, A. Ozarowski, J. van Tol, R. Buckan, D. Mikhailova, H. Ehrenberg, R.-A. Eichel, Phys. Chem. Chem. Phys. 13, 9344 (2011)CrossRefGoogle Scholar
  19. 19.
    R.-A.E.P. Jakes, J. Granwehr, H. Kungl, Z. Phys. Chem. 229, 1439 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Jakes, L. Kröll, A. Ozarowski, J. van Tol, D. Mikhailova, H. Ehrenberg, R.-A. Eichel, Z. Phys. Chem. 231, 905 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Jakes, G. Cohn, Y. Ein-Eli, F. Scheiba, H. Ehrenberg, R.-A. Eichel, ChemSusChem 5, 2278 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Wandt, C. Marino, H.A. Gasteiger, P. Jakes, R.-A. Eichel, J. Granwehr, Energy Environ. Sci. 8, 1358 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Niemöller, P. Jakes, S. Kayser, Y. Lin, W. Lehnert, J. Granwehr, J. Magn. Reson. 269, 157 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Wandt, P. Jakes, J. Granwehr, H.A. Gasteiger, R.A. Eichel, Angew. Chem. Int. Ed. 128, 7006 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Niemöller, P. Jakes, S. Eurich, A. Paulus, H. Kungl, J. Chem. Phys. 148, 14705 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Mandal, R.M. Rojas, J.M. Amarilla, P. Calle, N.V. Kosova, V.F. Anufrienko, J.M. Rojo, Chem. Mater. 14, 1598 (2002)CrossRefGoogle Scholar
  27. 27.
    M. Kopeć, J.R. Dygas, F. Krok, A. Mauger, F. Gendron, B. Jaszczak-Figiel, A. Gagor, K. Zaghib, C.M. Julien, Chem. Mater. 21, 2525 (2009)CrossRefGoogle Scholar
  28. 28.
    R.K. Stoyanova, E.N. Zhecheva, M.Y. Gorova, J. Mater. Chem. 10, 1377 (2000)CrossRefGoogle Scholar
  29. 29.
    E. Zhecheva, R. Stoyanova, Solid State Commun. 135, 405 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    P.W. Anderson, P.R. Weiss, Rev. Mod. Phys. 25, 269 (1953)ADSCrossRefGoogle Scholar
  31. 31.
    M.M. Thackeray, J. Electrochem. Soc. 139, 363 (1992)CrossRefGoogle Scholar
  32. 32.
    D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, M.C. Mozzati, C.B. Azzoni, Solid State Commun. 125, 179 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ruoheng Sun
    • 1
    • 3
    Email author
  • Peter Jakes
    • 1
  • Svitlana Eurich
    • 1
  • Désirée van Holt
    • 1
  • Shuo Yang
    • 2
  • Melanie Homberger
    • 2
  • Ulrich Simon
    • 2
  • Hans Kungl
    • 1
  • Rüdiger-A. Eichel
    • 1
    • 3
  1. 1.Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie)JülichGermany
  2. 2.Institut für Anorganische ChemieRWTH Aachen UniversityAachenGermany
  3. 3.Institut für Physikalische ChemieRWTH Aachen UniversityAachenGermany

Personalised recommendations