Skip to main content
Log in

A Variable Temperature X- and W-Band EPR Study of Fe-Doped SiCN Ceramics Annealed at 1000, 1100, and 1285 °C: Dangling Bonds, Ferromagnetism and Superparamagnetism

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Polymer-derived SiCN ceramics, annealed (also referred to as pyrolyzed) at 1000, 1100, and 1285 °C, and doped with Fe(III) acetylacetonate, are investigated by electron paramagnetic resonance (EPR) from 4 to 120 K at X-band (9.425 GHz). In addition, the SiCN ceramic, annealed at 1100 °C, was studied by EPR at 300 K at W-band (93.96 GHz). There was observed a significant increase in EPR linewidth due to dangling bonds (g = 2.001) below 20 K at X-band. The low-field X-band FMR line (g ≈ 12) indicated the presence of ferromagnetic Fe5Si3 crystallites. There were found two EPR lines due to carbon-related dangling bonds: (1) those present as defects on the surface of the free-carbon phase (as sp2 carbon-related dangling bonds with g = 2.0011) and (2) those present within the bulk of carbon phase (as sp3 carbon-related dangling bonds with g = 2.0033). On the other hand, the intense low-field EPR signal observed at X-band was not observed at W-band. As well, there was observed splitting of the single broad EPR signal observed at g = 2.05 at X-band into two signals at W-band at g = 1.99 and g = 2.06, due to two different Fe-containing superparamagnetic nanocrystallites. Two new EPR signals, not observed at X-band, were observed at W-band, namely at g = 2.28 and g = 3.00, which are also due to g of these superparamagnetic nanocrystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.-A. Liew, R.A. Saravanan, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators A 103, 171 (2003)

    Article  Google Scholar 

  2. L.-A. Liew, W. Zhang, V.M. Bright, L. An, M.L. Dunn, R. Raj, Sens. Actuators A 89, 64 (2001)

    Article  Google Scholar 

  3. L.-A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators A 95, 120 (2002)

    Article  Google Scholar 

  4. M. Zaheer, T. Schmalz, G. Motz, R. Kempe, Chem. Soc. Rev. 41, 5102 (2012)

    Article  Google Scholar 

  5. M. Hojamberdiev, R.M. Prasad, C. Fasel, R. Riedel, E. Ionescu, Eur. J. Ceram. Soc. 33, 2465 (2013)

    Article  Google Scholar 

  6. G. Mera, M. Gallei, S. Bernard, E. Ionescu, Nanomaterials 5, 468 (2015)

    Article  Google Scholar 

  7. S.I. Andronenko, I. Stiharu, S.K. Misra, J. Appl. Phys. 99, 113907 (2006)

    Article  ADS  Google Scholar 

  8. S.I. Andronenko, I. Stiharu, S.K. Misra, C. Lacroix, D. Menard, Appl. Magn. Reson. 38, 385 (2010)

    Article  Google Scholar 

  9. S.I. Andronenko, A. Leo, I. Stiharu, S.K. Misra, Appl. Magn. Reson. 39, 347 (2010)

    Article  Google Scholar 

  10. Alfin Leo, Sergey Andronenko, Ion Stiharu, Rama B. Bhat, Sensors 10, 1338 (2010)

    Article  Google Scholar 

  11. D.Y. Lin, C.F. Li, Y.S. Huang, Y.C. Jong, Y.F. Chen, L.C. Chen, C.K. Chen, K.H. Chen, D.M. Bhusari, Phys. Rev. B 56, 6498 (1997)

    Article  ADS  Google Scholar 

  12. A.M. Hermann, Y.T. Wang, P.A. Ramakrishnan, D. Balzar, L. An, C. Haluschka, R. Riedel, J. Am. Ceram. Soc. 84, 2260 (2001)

    Article  Google Scholar 

  13. S. Trassl, M. Puchinger, E. Rössler, G. Ziegler, J. Eur. Ceram. Soc. 23, 781 (2003)

    Article  Google Scholar 

  14. S. Trassl, G. Motz, E. Rossler, G. Ziegler, Non-Cryst. Sol. 293–295, 261 (2001)

    Article  Google Scholar 

  15. S. Trassl, G. Motz, E. Rossler, G. Ziegler, J. Am. Ceram. Soc. 85, 239 (2002)

    Article  Google Scholar 

  16. S. Trassl, H.-J. Kleebe, H. Stormer, G. Motz, E. Rossler, G. Ziegler, J. Am. Ceram. Soc. 85, 1268 (2002)

    Article  Google Scholar 

  17. E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, G. Fasel, R. Riedel, R.-A. Eichel, Phys. Chem. Chem. Phys. 11, 5628 (2009)

    Article  Google Scholar 

  18. F. Berger, A. Muller, F. Albinger, K. Muller, Z. Anorg, Allg. Chem. 631, 355 (2005)

    Article  Google Scholar 

  19. Y. Li, Y. Yu, H. San, Q. Han, L. An, J. Mater. Sci. Chem. Eng. 3, 9 (2015)

    Article  Google Scholar 

  20. Y.-L. Li, E. Kroke, R. Riedel, C. Fasel, C. Gervais, F. Babonneau, Appl. Organomet. Chem. 15, 820 (2001)

    Article  Google Scholar 

  21. E. Tomasella, L. Spinelle, A. Bousquet, F. Rebib, M. Dubois, C. Eypert, J.P. Gaston, J. Cellier, Plasma Process. Polym. 6, S11–S16 (2009)

    Article  Google Scholar 

  22. E. Tomasella, F. Rebib, M. Dubois, J. Cellier, M. Jacquet, J. Phys. Conf. Ser. 100, 082045 (2008)

    Article  Google Scholar 

  23. K. Kobayashi, H. Yokoyama, M. Endoh, Appl. Surf. Sci. 254, 6222 (2008)

    Article  ADS  Google Scholar 

  24. D. Savchenko, V. Kulikovsky, V. Vorliček, J. Lanček, V. Kiselov, E. Kalabukhova, Phys. Stat. Sol. B 251, 1178 (2014)

    Article  ADS  Google Scholar 

  25. E. Sawatzky, I.E.E.E. Trans. Magn. 7, 374 (1971)

    Article  ADS  Google Scholar 

  26. J. Kliava, R. Berger, J. Magn. Magn. Mater. 205, 328 (1999)

    Article  ADS  Google Scholar 

  27. T. Shimizu, M. Kumeda, Y. Kiriyama, Solid State Commun. 37, 699 (1981)

    Article  ADS  Google Scholar 

  28. N. Ishii, M. Kumeda, T. Shimizu, Jpn. J. Appl. Phys. 20, L673 (1981)

    Article  ADS  Google Scholar 

  29. S.K. Misra, Phys. Rev. B 58, 14971 (1998)

    Article  ADS  Google Scholar 

  30. A.V. Vasin, S.P. Kolesnik, A.A. Konchits, A.V. Rusavsky, V.S. Lysenko, A.N. Nazarov, Y. Ishikawa, Y. Koshka, J. Appl. Phys. 103, 123710 (2008)

    Article  ADS  Google Scholar 

  31. J.E. Wertz, J.R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications (McGraw-Hill Book Company, New York, 1972)

    Google Scholar 

  32. A. Saha, R. Raj, D.L. Williamson, J. Am. Ceram. Soc. 89, 2188 (2006)

    Google Scholar 

  33. A. Saha, R. Raj, J. Am. Ceram. Soc. 90, 578 (2007)

    Article  Google Scholar 

  34. N. Resta, C. Kohler, H.-R. Treblin, J. Am. Ceram. Soc. 86, 1409 (2003)

    Article  Google Scholar 

  35. O.E. Andersson, B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kabaragi, M. Yoshikawa, S. Bandow, Phys. Rev. B 58, 16387 (1998)

    Article  ADS  Google Scholar 

  36. B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A.M. Rao, P.C. Eklund, K. Oshida, M. Endo, Phys. Rev. B 62, 11209 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (SKM); SIA is grateful to Ministry of Education and Science of Russian Federation, for partial support in the frame of research project, allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (#3.2166.2017/4.6). SIA is grateful to Dr. S. B. Orlinskii for high-frequency (W-band) EPR measurements at the Federal Center of Shared Facilities of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Andronenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronenko, S.I., Rodionov, A.A. & Misra, S.K. A Variable Temperature X- and W-Band EPR Study of Fe-Doped SiCN Ceramics Annealed at 1000, 1100, and 1285 °C: Dangling Bonds, Ferromagnetism and Superparamagnetism. Appl Magn Reson 49, 335–344 (2018). https://doi.org/10.1007/s00723-017-0973-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0973-y

Navigation