Skip to main content
Log in

Theoretical Investigations of the Spin Hamiltonian Parameters for the Mononuclear Square Pyramidal [CuO5] Groups in Two Paddle Wheel Copper Complexes

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The spin Hamiltonian parameters (SHPs) (g factors and hyperfine structure constants) for the mononuclear square pyramidal [CuO5] groups in two paddle wheel copper complexes {Cu22–O2CCH3)4}(OCNH2CH3) and \({}_{\infty }^{3} [{\text{Cu}}_{ 2}^{\text{I}} {\text{Cu}}_{ 2}^{\text{II}} ( {\text{H}}_{ 2} {\text{O)}}_{ 2} {\text{L}}_{ 2} {\text{Cl}}_{ 2} ]\) are theoretically investigated from the perturbation calculations of these parameters for a rhombically elongated octahedral 3d 9 group. The slightly larger anisotropy Δg (≈ g // − g) of complex 1 than complex 2 is attributed to the slightly bigger deviations of the polar angles related to the ideal value 90° and relative differences between the axial and basal Cu–O distances in the former. The axiality of the EPR signals for both systems can be illustrated as the fact that the perpendicular anisotropic contributions to X and Y components of the SHPs arising from the four basal ligands with slightly distinct bond lengths and bond angles may roughly cancel one another. The signs of hyperfine structure constants are also theoretically determined for both complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Braña, D. Quiñone, S. Martínez, J. Grassi, I. Carrera, J. Torres, J. González-Platas, G. Seoane, C. Kremer, C. Mendoza, J. Coord. Chem. 69, 3650 (2016). https://doi.org/10.1080/00958972.2016.1239086

    Article  Google Scholar 

  2. F. Albert Cotton, C.A. Murillo, R.A. Walton (eds.), Multiple Bonds Between Metal Atoms, 3rd edn. (Springer, New York, 2005)

    Google Scholar 

  3. G.M. Wang, Z.Z. Xue, J. Pan, L. Wei, S.D. Han, J.J. Qian, Z.H. Wang, CrystEngComm 18, 8362 (2016). https://doi.org/10.1039/C6CE01954D

    Article  Google Scholar 

  4. M.R. Silva, B. Milne, J.T. Coutinho, L.C.J. Pereira, P. Martín-Ramos, P.S.P. da Silva, J. Martín-Gil, Solid State Sci. 53, 37 (2016). https://doi.org/10.1016/j.solidstatesciences.2015.12.023

    Article  ADS  Google Scholar 

  5. Q.G. Meng, C. Chen, L.T. Wang, L.L. Liu, M.J. Song, J.T. Lu, J. Clust. Sci. 27, 1229 (2016). https://doi.org/10.1007/s10876-016-0994-y

    Article  Google Scholar 

  6. D. Shi, Y.W. Ren, H.F. Jiang, B.W. Cai, J.X. Lu, Inorg. Chem. 51, 6498 (2012). https://doi.org/10.1021/ic202624e

    Article  Google Scholar 

  7. D.A. Gomez, A.F. Combariza, G. Sastre, Phys. Chem. Chem. Phys. 14, 2508 (2012). https://doi.org/10.1039/C2CP23146H

    Article  Google Scholar 

  8. H.M. He, F.X. Sun, S.Q. Ma, G.S. Zhu, Inorg. Chem. 55, 9071 (2016). https://doi.org/10.1021/acs.inorgchem.6b01592

    Article  Google Scholar 

  9. V. Paredes-García, R.C. Santana, R. Madrid, A. Vega, E. Spodine, D. Venegas-Yazigi, Inorg. Chem. 52, 8369 (2013). https://doi.org/10.1021/ic3027804

    Article  Google Scholar 

  10. S. Friedländer, M. Šimėnas, M. Kobalz, P. Eckold, O. Ovchar, A.G. Belous, J. Banys, H. Krautscheid, A. Pöppl, J. Phys. Chem. C 119, 19171 (2015). https://doi.org/10.1021/acs.jpcc.5b05019

    Article  Google Scholar 

  11. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Oxford Press, Clarendon, 1990). (ISBN 10: 0198552149/ISBN 13: 9780198552147)

    Google Scholar 

  12. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1986). (ISBN 9780199651528)

    Google Scholar 

  13. M.Q. Kuang, S.Y. Wu, B.T. Song, L.L. Li, Z.H. Zhang, Optik 124, 892 (2013). https://doi.org/10.1016/j.ijleo.2012.02.024

    Article  ADS  Google Scholar 

  14. H.M. Zhang, S.Y. Wu, M.Q. Kuang, Z.H. Zhang, J. Phys. Chem. Solids 73, 846 (2012). https://doi.org/10.1016/j.jpcs.2012.02.021

    Article  ADS  Google Scholar 

  15. Y.X. Hu, S.Y. Wu, X.F. Wang, Philos. Mag. 90, 1391 (2010). https://doi.org/10.1080/14786430903369585

    Article  ADS  Google Scholar 

  16. S.Y. Wu, L.H. Wei, Z.H. Zhang, X.F. Wang, J.Z. Lin, Z. Naturforsch. A 63, 523 (2008). https://doi.org/10.1515/zna-2008-7-821

    Article  ADS  Google Scholar 

  17. J.Z. Lin, S.Y. Wu, Q. Fu, H.M. Zhang, Mod. Phys. Lett. B 21, 737 (2007). https://doi.org/10.1142/S0217984907013006

    Article  ADS  Google Scholar 

  18. J.S. Yao, S.Y. Wu, X.Y. Gao, H.M. Zhang, Hyperfine Interact. 174, 103 (2007). https://doi.org/10.1007/s10751-007-9516-5

    Article  ADS  Google Scholar 

  19. D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989). https://doi.org/10.1088/0034-4885/52/6/002

    Article  ADS  Google Scholar 

  20. S.Y. Wu, H.M. Zhang, G.D. Lu, J.S. Yao, Z. Naturforsch. 62a, 338 (2007). https://doi.org/10.1515/zna-2007-5-616

    ADS  Google Scholar 

  21. H.M. Zhang, S.Y. Wu, G.D. Lu, Z.H. Zhang, L.H. Wei, Radiat. Eff. Defects Solids 163, 789 (2008). https://doi.org/10.1080/10420150701773271

    Article  ADS  Google Scholar 

  22. L.H. Wei, S.Y. Wu, Z.H. Zhang, X.F. Wang, Y.X. Hu, Hyperfine Interact. 181, 169 (2008). https://doi.org/10.1007/s10751-008-9710-0

    Article  ADS  Google Scholar 

  23. S.Y. Wu, H.M. Zhang, P. Xu, S.X. Zhang, Spectrochim. Acta A 75, 230 (2010). https://doi.org/10.1016/j.saa.2009.10.016

    Article  ADS  Google Scholar 

  24. X.F. Wang, S.Y. Wu, Z.H. Zhang, L.H. We, Y.X. Hu, Mod. Phys. Lett. B 22, 1381 (2008). https://doi.org/10.1142/S0217984908016091

    Article  ADS  Google Scholar 

  25. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963). https://doi.org/10.1063/1.1733573

    Article  ADS  Google Scholar 

  26. E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967). https://doi.org/10.1063/1.1712084

    Article  ADS  Google Scholar 

  27. A.S. Chakravarty, Introduction to the Magnetic Properties of Solids (John Wiley & Sons Inc. Press, New York, 1981). (ISBN-10: 0471077372/ISBN-13: 978-0471077374)

    Google Scholar 

  28. K.H. Karlsson, T. Perander, Chem. Scr. 3, 201 (1973)

    Google Scholar 

  29. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964). (ISBN 10: 052111599X/ISBN 13: 9780521115995)

    MATH  Google Scholar 

  30. B.R. McGarvey, J. Phys. Chem. 71, 51 (1967). https://doi.org/10.1021/j100860a007

    Article  Google Scholar 

  31. E.K. Hodgson, I. Fridovich, Biochem. Biophys. Res. Commun. 54, 270–274 (1973). https://doi.org/10.1016/0006-291X(73)90918-2

    Article  Google Scholar 

  32. A.W. Addison, in Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, ed. by K.D. Karlin, J. Zubieta (Adenine Press, New York, 1983) p. 109. (ISBN 13: 0940030039)

    Google Scholar 

  33. R.W. Meulenberg, T. van Buuren, K.M. Hanif, T.M. Willey, G.F. Strouse, L.J. Terminello, Nano Lett. 4, 2277 (2004). https://doi.org/10.1021/nl048738s

    Article  ADS  Google Scholar 

  34. A. Rockenbauer, J. Magn. Reson. 35, 429–438 (1979). https://doi.org/10.1016/0022-2364(79)90065-9

    ADS  Google Scholar 

  35. CP2K Developers Group. http://www.cp2k.org

  36. F. Neese, The ORCA program system. Wiley Interdiscip Rev Comput Mol Science 2, 73 (2012). https://doi.org/10.1002/wcms.81

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Province Academic and Technical Leaders Support Fund (Y02028023601041) and the National Natural Science Foundation of China Granted no. 11764028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Na Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LN., Wu, SY., Kuang, MQ. et al. Theoretical Investigations of the Spin Hamiltonian Parameters for the Mononuclear Square Pyramidal [CuO5] Groups in Two Paddle Wheel Copper Complexes. Appl Magn Reson 49, 125–135 (2018). https://doi.org/10.1007/s00723-017-0971-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0971-0

Navigation